258
Views
0
CrossRef citations to date
0
Altmetric
Review

LncRNAs, nuclear architecture and the immune response

, & ORCID Icon
Article: 2350182 | Received 05 Feb 2024, Accepted 22 Apr 2024, Published online: 13 May 2024

References

  • Mattick JS, Amaral PP, Carninci P, et al. Long non-coding RNAs: definitions, functions, challenges and recommendations. Nat Rev Mol Cell Biol [Internet]. 2023 [cited 2024 Jan 19];24(6):430–14. doi: 10.1038/s41580-022-00566-8
  • Seiler J, Breinig M, Caudron-Herger M, et al. The lncRNA VELUCT strongly regulates viability of lung cancer cells despite its extremely low abundance. Nucleic Acids Res. 2017;45(9):5458–5469. doi: 10.1093/nar/gkx076
  • Han D, Fang R, Shi R, et al. LncRNA NKILA knockdown promotes cell viability and represses cell apoptosis, autophagy and inflammation in lipopolysaccharide-induced sepsis model by regulating miR-140-5p/CLDN2 axis. Biochem Biophys Res Commun. 2021;559:8–14. doi: 10.1016/j.bbrc.2021.04.074
  • Kitagawa M, Kitagawa K, Kotake Y, et al. Cell cycle regulation by long non-coding RNAs. Cell Mol Life Sci. 2013;70(24):4785–4794. doi: 10.1007/s00018-013-1423-0
  • Liu X, Li D, Zhang W, et al. Long non-coding RNA gadd7 interacts with TDP-43 and regulates Cdk6 mRNA decay. Embo J. 2012;31(23):4415–4427. doi: 10.1038/emboj.2012.292
  • Ahmad I, Valverde A, Ahmad F, et al. Long noncoding RNA in myeloid and lymphoid cell differentiation, polarization and function. Cells [Internet]. 2020 [cited 2024 Jan 28];9(2):269. doi: 10.3390/cells9020269
  • Guo H, Wu L, Yang Q, et al. Functional linc-POU3F3 is overexpressed and contributes to tumorigenesis in glioma. Gene. 2015;554(1):114–119. doi: 10.1016/j.gene.2014.10.038
  • Qian Y, Shi L, Luo Z. Long non-coding RNAs in cancer: implications for diagnosis, prognosis, and therapy. Front Med. 2020;7:612393. doi: 10.3389/fmed.2020.612393
  • Elazazy O, Midan HM, Shahin RK, et al. Long non-coding RNAs and rheumatoid arthritis: pathogenesis and clinical implications. Pathol Res Pract. 2023;246:154512. doi: 10.1016/j.prp.2023.154512
  • Mehmandar-Oskuie A, Jahankhani K, Rostamlou A, et al. Molecular mechanism of lncRnas in pathogenesis and diagnosis of auto-immune diseases, with a special focus on lncRNA-based therapeutic approaches. Life Sci. 2024;336:122322. doi: 10.1016/j.lfs.2023.122322
  • Legnini I, Morlando M, Mangiavacchi A, et al. A feedforward regulatory loop between HuR and the long noncoding RNA linc-MD1 controls early phases of myogenesis. Mol Cell. 2014;53(3):506–514. doi: 10.1016/j.molcel.2013.12.012
  • Faghihi MA, Modarresi F, Khalil AM, et al. Expression of a noncoding RNA is elevated in Alzheimer’s disease and drives rapid feed-forward regulation of β-secretase. Nat Med. 2008;14(7):723–730. doi: 10.1038/nm1784
  • Statello L, Guo C-J, Chen L-L, et al. Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol [Internet]. 2021 [cited 2023 Nov 28];22(2):96–118. doi: 10.1038/s41580-020-00315-9
  • Mondal T, Subhash S, Vaid R, et al. MEG3 long noncoding RNA regulates the TGF-β pathway genes through formation of RNA–DNA triplex structures. Nat Commun. 2015;6(1):7743. doi: 10.1038/ncomms8743
  • Tripathi V, Ellis JD, Shen Z, et al. The nuclear-retained noncoding RNA MALAT1 regulates alternative splicing by modulating SR splicing factor phosphorylation. Mol Cell. 2010;39(6):925–938. doi: 10.1016/j.molcel.2010.08.011
  • Wheeler BD, Gagnon JD, Zhu WS, et al. The lncRNA Malat1 inhibits miR-15/16 to enhance cytotoxic T cell activation and memory cell formation. Elife. 2023;12:RP87900. doi: 10.7554/eLife.87900
  • Liu W, Wang Z, Liu L, et al. LncRNA Malat1 inhibition of TDP43 cleavage suppresses IRF3-initiated antiviral innate immunity. Proc Natl Acad Sci USA. 2020;117(38):23695–23706. doi: 10.1073/pnas.2003932117
  • Isoda T, Moore AJ, He Z, et al. Non-coding transcription instructs chromatin folding and compartmentalization to dictate enhancer-promoter Communication and T cell fate. Cell. 2017;171(1):103–119.e18. doi: 10.1016/j.cell.2017.09.001
  • Beucher A, Miguel-Escalada I, Balboa D, et al. The HASTER lncRNA promoter is a cis-acting transcriptional stabilizer of HNF1A. Nat Cell Biol. 2022;24(10):1528–1540. doi: 10.1038/s41556-022-00996-8
  • Uroda T, Anastasakou E, Rossi A, et al. Conserved pseudoknots in lncRNA MEG3 are essential for stimulation of the p53 pathway. Mol Cell. 2019;75(5):982–995.e9. doi: 10.1016/j.molcel.2019.07.025
  • Nickerson JA, Krochmalnic G, Wan KM, et al. Chromatin architecture and nuclear RNA. Proc Natl Acad Sci USA. 1989;86(1):177–181. doi: 10.1073/pnas.86.1.177
  • Cavalieri V. The expanding constellation of histone post-translational modifications in the Epigenetic landscape. Genes [Internet]. 2021 [cited 2024 Apr 5];12(10):1596. https://www.mdpi.com/2073-4425/12/10/1596
  • Di Croce L, Helin K. Transcriptional regulation by polycomb group proteins. Nat Struct Mol Biol. 2013;20(10):1147–1155. doi: 10.1038/nsmb.2669
  • Khalil AM, Guttman M, Huarte M, et al. Many human large intergenic noncoding RNAs associate with chromatin-modifying complexes and affect gene expression. Proc Natl Acad Sci USA. 2009;106(28):11667–11672. doi: 10.1073/pnas.0904715106
  • Zhao J, Ohsumi TK, Kung JT, et al. Genome-wide identification of polycomb-associated RNAs by RIP-seq. Mol Cell. 2010;40(6):939–953. doi: 10.1016/j.molcel.2010.12.011
  • Rosenberg M, Blum R, Kesner B, et al. Motif-driven interactions between RNA and PRC2 are rheostats that regulate transcription elongation. Nat Struct Mol Biol. 2021;28(1):103–117. doi: 10.1038/s41594-020-00535-9
  • Wang X, Goodrich KJ, Gooding AR, et al. Targeting of Polycomb Repressive Complex 2 to RNA by short repeats of consecutive guanines. Mol Cell. 2017;65(6):1056–1067.e5. doi: 10.1016/j.molcel.2017.02.003
  • Kaneko S, Son J, Bonasio R, et al. Nascent RNA interaction keeps PRC2 activity poised and in check. Genes Dev. 2014;28(18):1983–1988. doi: 10.1101/gad.247940.114
  • Beltran M, Yates CM, Skalska L, et al. The interaction of PRC2 with RNA or chromatin is mutually antagonistic. Genome Res. 2016;26(7):896–907. doi: 10.1101/gr.197632.115
  • Healy E, Zhang Q, Gail EH, et al. The apparent loss of PRC2 chromatin occupancy as an artifact of RNA depletion. Cell reports [Internet]. 2024 [cited 2024 Mar 7];43(3):113858. doi: 10.1016/j.celrep.2024.113858
  • Guo JK, Blanco MR, Walkup WG, et al. Denaturing purifications demonstrate that PRC2 and other widely reported chromatin proteins do not appear to bind directly to RNA in vivo. Mol Cell. 2024;84(7):S1097–2765(24)00093–5. doi: 10.1016/j.molcel.2024.01.026
  • Borsani G, Tonlorenzi R, Simmler MC, et al. Characterization of a murine gene expressed from the inactive X chromosome. Nature. 1991;351(6324):325–329. doi: 10.1038/351325a0
  • Brockdorff N, Ashworth A, Kay GF, et al. The product of the mouse xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus. Cell. 1992;71(3):515–526. doi: 10.1016/0092-8674(92)90519-I
  • Brown CJ, Hendrich BD, Rupert JL, et al. The human XIST gene: analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus. Cell. 1992;71(3):527–542. doi: 10.1016/0092-8674(92)90520-M
  • Heard E. Delving into the diversity of facultative heterochromatin: the epigenetics of the inactive X chromosome. Curr Opin Genet Dev. 2005;15(5):482–489. doi: 10.1016/j.gde.2005.08.009
  • Hall LL, Lawrence JB. XIST RNA and architecture of the inactive X chromosome: implications for the repeat genome. Cold Spring harb symp quant biol [Internet]. 2010 [cited 2024 Apr 1];75(0):345–356. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3143471/
  • Jachowicz JW, Strehle M, Banerjee AK, et al. Xist spatially amplifies SHARP/SPEN recruitment to balance chromosome-wide silencing and specificity to the X chromosome. Nat Struct Mol Biol. 2022;29(3):239–249. doi: 10.1038/s41594-022-00739-1
  • Medzhitov R, Horng T. Transcriptional control of the inflammatory response. Nat Rev Immunol [Internet]. 2009 [cited 2024 Apr 3];9(10):692–703. doi: 10.1038/nri2634
  • Syrett CM, Paneru B, Sandoval-Heglund D, et al. Altered X-chromosome inactivation in T cells may promote sex-biased autoimmune diseases. JCI Insight. 2019;4(7):e126751, 126751. doi: 10.1172/jci.insight.126751
  • Wang J, Syrett CM, Kramer MC, et al. Unusual maintenance of X chromosome inactivation predisposes female lymphocytes for increased expression from the inactive X. Proc Natl Acad Sci USA. 2016;113(14):E2029–2038. doi: 10.1073/pnas.1520113113
  • Jiwrajka N, Toothacre NE, Beethem ZT, et al. Impaired dynamic X-chromosome inactivation maintenance in T cells is a feature of spontaneous murine SLE that is exacerbated in female-biased models. J Autoimmun. 2023;139:103084. doi: 10.1016/j.jaut.2023.103084
  • Souyris M, Cenac C, Azar P, et al. TLR7 escapes X chromosome inactivation in immune cells. Sci Immunol. 2018;3(19):eaap8855. doi: 10.1126/sciimmunol.aap8855
  • JD C, Wang H, Trejo-Zambrano D, et al. The XIST lncRNA is a sex-specific reservoir of TLR7 ligands in SLE. JCI insight [Internet]. 2023 [cited 2024 Jan 25];8(20). Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC10634230/
  • Dou DR, Zhao Y, Belk JA, et al. Xist ribonucleoproteins promote female sex-biased autoimmunity. Cell [Internet]. 2024 [cited 2024 Mar 13];187(3):733–749.e16. doi: 10.1016/j.cell.2023.12.037
  • Fox AH, Nakagawa S, Hirose T, et al. Paraspeckles: where long noncoding RNA meets phase separation. Trends Biochem Sci. 2018;43(2):124–135. doi: 10.1016/j.tibs.2017.12.001
  • Naganuma T, Nakagawa S, Tanigawa A, et al. Alternative 3’-end processing of long noncoding RNA initiates construction of nuclear paraspeckles. Embo J. 2012;31(20):4020–4034. doi: 10.1038/emboj.2012.251
  • Fox AH, Bond CS, Lamond AI. P54nrb forms a heterodimer with PSP1 that localizes to paraspeckles in an RNA-dependent manner. Mol Biol Cell. 2005;16(11):5304–5315. doi: 10.1091/mbc.e05-06-0587
  • Imamura K, Imamachi N, Akizuki G, et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. Mol Cell [Internet]. 2014 [cited 2024 Jan 26];53(3):393–406. doi: 10.1016/j.molcel.2014.01.009
  • Azam S, Armijo KS, Weindel CG, et al. The early macrophage response to pathogens requires dynamic regulation of the nuclear paraspeckle [Internet]. Proc Natl Acad Sci. 2024 Feb 27;121(9): e2312587121. doi: 10.1073/pnas.2312587121
  • Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159(7):1665–1680. doi: 10.1016/j.cell.2014.11.021
  • Fanucchi S, Fok ET, Dalla E, et al. Immune genes are primed for robust transcription by proximal long noncoding RNAs located in nuclear compartments. Nat Genet. 2019;51(1):138–150. doi: 10.1038/s41588-018-0298-2
  • ET F, SJCFM M, Negishi Y, et al. A chromatin-regulated biphasic circuit coordinates IL-1β-mediated inflammation. Nat Genet [Internet]. 2024 [cited 2024 Jan 26];56(1):85–99. Available from: https://www.nature.com/articles/s41588-023-01598-2
  • Karikó K, Buckstein M, Ni H, et al. Suppression of RNA recognition by Toll-like receptors: the impact of nucleoside modification and the evolutionary origin of RNA. Immunity. 2005;23(2):165–175. doi: 10.1016/j.immuni.2005.06.008
  • Boccaletto P, Machnicka MA, Purta E, et al. MODOMICS: a database of RNA modification pathways. 2017 update. Nucleic Acids Res. 2018;46(D1):D303–7. doi: 10.1093/nar/gkx1030
  • National Academies Sciences Engineering Medicine. Charting a future for sequencing RNA and its modifications: a new era for biology and medicine [Internet]. Washington, D.C: National Academies Press; 2024 [cited 2024 Apr 2]. Available from: https://www.nap.edu/catalog/27165
  • Carpenter S, Aiello D, Atianand MK, et al. A long noncoding RNA mediates both activation and repression of immune response genes. Science. 2013;341(6147):789–792. doi: 10.1126/science.1240925
  • Covarrubias S, Robinson EK, Shapleigh B, et al. CRISPR/cas-based screening of long non-coding RNAs (lncRnas) in macrophages with an NF-κB reporter. J Biol Chem. 2017;292(51):20911–20920. doi: 10.1074/jbc.M117.799155
  • Elling R, Robinson EK, Shapleigh B, et al. Genetic models reveal cis and trans immune-regulatory activities for lincRNA-Cox2. Cell Rep. 2018;25(6):1511–1524.e6. doi: 10.1016/j.celrep.2018.10.027
  • Robinson EK, Worthington A, Poscablo D, et al. lincRNA-Cox2 functions to regulate inflammation in alveolar macrophages during acute lung injury. J Immunol. 2022;208(8):1886–1900. doi: 10.4049/jimmunol.2100743
  • Salih MM, Robinson EK, Malekos E, et al. LincRNA-Cox2 Regulates smoke-induced inflammation in murine macrophages. Am J Respir Cell Mol Biol. 2023;68(5):511–522. doi: 10.1165/rcmb.2022-0413OC
  • Tong Q, Gong A-Y, Zhang X-T, et al. LincRNA-Cox2 modulates TNF-α-induced transcription of Il12b gene in intestinal epithelial cells through regulation of mi-2/NuRD-mediated epigenetic histone modifications. Faseb J. 2016;30(3):1187–1197. doi: 10.1096/fj.15-279166
  • Hu G, Gong A-Y, Wang Y, et al. LincRNA-Cox2 promotes late inflammatory gene transcription in macrophages through modulating SWI/SNF-Mediated chromatin remodeling. J Immunol. 2016;196(6):2799–2808. doi: 10.4049/jimmunol.1502146
  • Trinh BQ, Ummarino S, Zhang Y, et al. Myeloid lncRNA LOUP mediates opposing regulatory effects of RUNX1 and RUNX1-ETO in t(8;21) AML. Blood. 2021;138:1331–1344. doi: 10.1182/blood.2020007920
  • Halasz H, Malekos E, Covarrubias S, et al. Crispri screens identify the lncRNA, LOUP, as a multifunctional locus regulating macrophage differentiation epigenetically and inflammatory signaling through a short, encoded peptide [Internet]. BioRxiv. 2023 [cited 2024 Jan 24]:2023.12.19.572453. doi: 10.1101/2023.12.19.572453v1
  • IIott NE, Heward JA, Roux B, et al. Long non-coding RNAs and enhancer RNAs regulate the lipopolysaccharide-induced inflammatory response in human monocytes. Nat Commun. 2014;5(1):3979. doi: 10.1038/ncomms4979
  • Hah N, Benner C, Chong L-W, et al. Inflammation-sensitive super enhancers form domains of coordinately regulated enhancer RNAs. Proc Natl Acad Sci USA. 2015;112(3):E297–302. doi: 10.1073/pnas.1424028112
  • Wan L, Li W, Meng Y, et al. Inflammatory immune-associated eRNA: mechanisms, functions and therapeutic prospects. Fronti in Immun [Internet]. 2022 [cited 2024 Jan 24];13. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9063412/
  • Link VM, Gosselin D, Glass CK. Mechanisms underlying the selection and function of macrophage-specific enhancers. Cold Spring Harb Symp Quant Biol. 2015;80:213–221. doi: 10.1101/sqb.2015.80.027367
  • Amaral PP, Clark MB, Gascoigne DK, et al. lncRNAdb: a reference database for long noncoding RNAs. Nucleic Acids Res. 2011;39(suppl_1):D146–151. doi: 10.1093/nar/gkq1138
  • Quek XC, Thomson DW, Maag JLV, et al. lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs. Nucleic Acids Res. 2015;43(D1):D168–173. doi: 10.1093/nar/gku988
  • Sauvageau M, Goff LA, Lodato S, et al. Multiple knockout mouse models reveal lincRNAS are required for life and brain development. eLife [Internet]0 2013 [cited 2024 Jan 23];2:e01749. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3874104/
  • Winkler L, Jimenez M, Zimmer JT, et al. Functional elements of the cis-regulatory lincRNA-p21. Cell Rep. 2022;39(3):110687. doi: 10.1016/j.celrep.2022.110687
  • Lewandowski JP, Dumbović G, Watson AR, et al. The Tug1 lncRNA locus is essential for male fertility. Geno Biol [Internet]. 2020 [cited 2024 Jan 23];21(1):237. doi: 10.1186/s13059-020-02081-5
  • Liu SJ, Horlbeck MA, Cho SW, et al. Crispri-based genome-scale identification of functional long noncoding RNA loci in human cells. Science. 2017;355(6320):aah7111. doi: 10.1126/science.aah7111
  • Liu Y, Cao Z, Wang Y, et al. Genome-wide screening for functional long noncoding RNAs in human cells by Cas9 targeting of splice sites. Nat Biotechnol [Internet]. 2018 [cited 2024 Jan 24];36(12):1203–1210. doi: 10.1038/nbt.4283