488
Views
0
CrossRef citations to date
0
Altmetric
Review

Nuclear functions regulated by the VRK1 kinase

ORCID Icon
Article: 2353249 | Received 02 Apr 2024, Accepted 06 May 2024, Published online: 16 May 2024

References

  • Cullen CF, Brittle AL, Ito T, et al. The conserved kinase NHK-1 is essential for mitotic progression and unifying acentrosomal meiotic spindles in drosophila melanogaster. J Cell Bio. 2005;171(4):593–18. doi: 10.1083/jcb.200508127
  • Manning G, Whyte DB, Martinez R, et al. The protein kinase complement of the human genome. Science. 2002;298(5600):1912–1934. doi: 10.1126/science.1075762
  • Nichols RJ, Traktman P. Characterization of three paralogous members of the mammalian vaccinia related kinase family. J Biol Chem. 2004;279(9):7934–7946. doi: 10.1074/jbc.M310813200
  • Campillo-Marcos I, García-González R, Navarro-Carrasco E, et al. The human VRK1 chromatin kinase in cancer biology. Cancer Lett. 2021;503:117–128. doi: 10.1016/j.canlet.2020.12.032
  • Campillo-Marcos I, Lazo PA. Implication of the VRK1 chromatin kinase in the signaling responses to DNA damage: a therapeutic target? Cell Mol Life Sci. 2018;75(13):2375–2388. doi: 10.1007/s00018-018-2811-2
  • Alfert A, Moreno N, Kerl K. The BAF complex in development and disease. Epigenet Chromatin. 2019;12(1):19. doi: 10.1186/s13072-019-0264-y
  • Kakarougkas A, Ismail A, Chambers AL, et al. Requirement for PBAF in transcriptional repression and repair at DNA breaks in actively transcribed regions of chromatin. Mol Cell. 2014;55(5):723–732. doi: 10.1016/j.molcel.2014.06.028
  • Sanz-Garcia M, Vazquez-Cedeira M, Kellerman E, et al. Substrate profiling of human vaccinia-related kinases identifies coilin, a cajal body nuclear protein, as a phosphorylation target with neurological implications. J Proteomics. 2011;75(2):548–560. doi: 10.1016/j.jprot.2011.08.019
  • Cantarero L, Sanz-Garcia M, Vinograd-Byk H, et al. VRK1 regulates cajal body dynamics and protects coilin from proteasomal degradation in cell cycle. Sci Rep. 2015;5:10543. doi: 10.1038/srep10543
  • Kouzarides T. Chromatin modifications and their function. Cell. 2007;128(4):693–705. doi: 10.1016/j.cell.2007.02.005
  • Bannister AJ, Kouzarides T. Regulation of chromatin by histone modifications. Cell Res. 2011;21(3):381–395. doi: 10.1038/cr.2011.22
  • Zhao Z, Shilatifard A. Epigenetic modifications of histones in cancer. Genome Biol. 2019;20(1):245. doi: 10.1186/s13059-019-1870-5
  • Nebbioso A, Tambaro FP, Dell’aversana C, et al. Cancer epigenetics: moving forward. PLOS Genet. 2018;14(6):e1007362. doi: 10.1371/journal.pgen.1007362
  • Audia JE, Campbell RM. Histone modifications and cancer. Cold Spring Harb Perspect Biol. 2016;8(4):a019521. doi: 10.1101/cshperspect.a019521
  • MacDonald JL, Tharin S, Hall SE. Epigenetic regulation of nervous system development and function. Neurochem Int. 2022;152:105249. doi: 10.1016/j.neuint.2021.105249
  • Kumar R, Deivendran S, Santhoshkumar TR, et al. Signaling coupled epigenomic regulation of gene expression. Oncogene. 2017;36(43):5917–5926. doi: 10.1038/onc.2017.201
  • Tessarz P, Kouzarides T. Histone core modifications regulating nucleosome structure and dynamics. Nat Rev Mol Cell Biol. 2014;15(11):703–708. doi: 10.1038/nrm3890
  • Valbuena A, Sanz-Garcia M, Lopez-Sanchez I, et al. Roles of VRK1 as a new player in the control of biological processes required for cell division. Cell Signal. 2011;23(8):1267–1272. doi: 10.1016/j.cellsig.2011.04.002
  • Nikalayevich E, Ohkura H. The NuRD nucleosome remodelling complex and NHK-1 kinase are required for chromosome condensation in oocytes. J Cell Sci. 2015;128(3):566–575. doi: 10.1242/jcs.158477
  • Shin J, Chakraborty G, Bharatham N, et al. NMR solution structure of human vaccinia-related kinase 1 (VRK1) reveals the C-terminal tail essential for its structural stability and autocatalytic activity. J Biol Chem. 2011;286(25):22131–22138. doi: 10.1074/jbc.M110.200162
  • Budziszewski GR, Zhao Y, Spangler CJ, et al. Multivalent DNA and nucleosome acidic patch interactions specify VRK1 mitotic localization and activity. Nucleic Acids Res. 2022;50(8):4355–4371. doi: 10.1093/nar/gkac198
  • Aihara H, Nakagawa T, Mizusaki H, et al. Histone H2A T120 phosphorylation promotes oncogenic transformation via upregulation of cyclin D1. Mol Cell. 2016;64(1):176–188. doi: 10.1016/j.molcel.2016.09.012
  • Kang TH, Park DY, Choi YH, et al. Mitotic histone H3 phosphorylation by vaccinia-related kinase 1 in mammalian cells. Mol Cell Biol. 2007;27(24):8533–8546. doi: 10.1128/MCB.00018-07
  • Moura DS, Campillo-Marcos I, Vazquez-Cedeira M, et al. VRK1 and AURKB form a complex that cross inhibit their kinase activity and the phosphorylation of histone H3 in the progression of mitosis. Cell Mol Life Sci. 2018;76(14):2591–2611. doi: 10.1007/s00018-018-2746-7
  • Garcia-Gonzalez R, Morejon-Garcia P, Campillo-Marcos I, et al. VRK1 phosphorylates Tip60/KAT5 and is required for H4K16 acetylation in response to DNA damage. Cancers (Basel). 2020;12(10):2986. doi: 10.3390/cancers12102986
  • García-González R, Monte-Serrano E, Morejón-García P, et al. The VRK1 chromatin kinase regulates the acetyltransferase activity of Tip60/KAT5 by sequential phosphorylations in response to DNA damage. Biochim Biophys Acta, Gene Regul Mech. 2022;1865(8):194887. doi: 10.1016/j.bbagrm.2022.194887
  • Monte-Serrano E, Lazo PA. VRK1 kinase activity modulating histone H4K16 acetylation inhibited by SIRT2 and VRK-IN-1. Int J Mol Sci. 2023;24(5):4912. doi: 10.3390/ijms24054912
  • Salzano M, Sanz-Garcia M, Monsalve DM, et al. VRK1 chromatin kinase phosphorylates H2AX and is required for foci formation induced by DNA damage. Epigenetics. 2015;10(5):373–383. doi: 10.1080/15592294.2015.1028708
  • Fernandez-Capetillo O, Lee A, Nussenzweig M, et al. H2AX: the histone guardian of the genome. DNA Repair. 2004;3(8–9):959–967. doi: 10.1016/j.dnarep.2004.03.024
  • Maeda K, Yoneda M, Nakagawa T, et al. Defects in centromeric/pericentromeric histone H2A T120 phosphorylation by hBUB1 cause chromosome missegregation producing multinucleated cells. Genes Cells. 2018;23(10):828–838.
  • Lazo PA, Morejón-García P. VRK1 variants at the cross road of cajal body neuropathogenic mechanisms in distal neuropathies and motor neuron diseases. Neurobiol Dis. 2023;183:106172. 10.1016/j.nbd.2023.106172
  • Turner BM. Nucleosome signalling; an evolving concept. Biochim Biophys Acta. 2014;1839(8):623–626. doi: 10.1016/j.bbagrm.2014.01.001
  • Becker PB, Workman JL. Nucleosome remodeling and epigenetics. Cold Spring Harb Perspect Biol. 2013;5(9):a017905. doi: 10.1101/cshperspect.a017905
  • Monte-Serrano E, Morejón-García P, Campillo-Marcos I, et al. The pattern of histone H3 epigenetic posttranslational modifications is regulated by the VRK1 chromatin kinase. Epigenet Chromatin. 2023;16(1):18. doi: 10.1186/s13072-023-00494-7
  • Serafim RAM, de Souza Gama FH, Dutra LA, et al. Development of pyridine-based inhibitors for the human vaccinia-related kinases 1 and 2. ACS Med Chem Lett. 2019;10(9):1266–1271. doi: 10.1021/acsmedchemlett.9b00082
  • Vaquero A, Scher MB, Lee DH, et al. SirT2 is a histone deacetylase with preference for histone H4 lys 16 during mitosis. Genes Dev. 2006;20(10):1256–1261. doi: 10.1101/gad.1412706
  • Vaquero A, Sternglanz R, Reinberg D. Nad±dependent deacetylation of H4 lysine 16 by class III HDACs. Oncogene. 2007;26(37):5505–5520. doi: 10.1038/sj.onc.1210617
  • Chakraborty S, Singh M, Pandita RK, Singh V, Lo CSC, Leonard F, Horikoshi N, Moros EG, Guha D, Hunt CR, et al. Heat-induced SIRT1-mediated H4K16ac deacetylation impairs resection and SMARCAD1 recruitment to double strand breaks. iScience. 2022;25(4):104142. doi: 10.1016/j.isci.2022.104142
  • Navarro-Carrasco E, Lazo PA. VRK1 depletion facilitates the synthetic lethality of temozolomide and olaparib in glioblastoma cells. Front Cell Dev Biol. 2021;9:683038. doi: 10.3389/fcell.2021.683038
  • Campillo-Marcos I, Monte-Serrano E, Navarro-Carrasco E, et al. Lysine methyltransferase inhibitors impair H4K20me2 and 53BP1 foci in response to DNA damage in sarcomas, a synthetic lethality strategy. Front Cell Dev Biol. 2021;9:715126. doi: 10.3389/fcell.2021.715126
  • Santos CR, Rodriguez-Pinilla M, Vega FM, et al. VRK1 signaling pathway in the context of the proliferation phenotype in head and neck squamous cell carcinoma. Mol Cancer Res. 2006;4(3):177–185. doi: 10.1158/1541-7786.MCR-05-0212
  • Valbuena A, López-Sánchez I, Lazo PA, Williams S. Human VRK1 is an early response gene and its loss causes a block in cell cycle progression. PLOS ONE. 2008;3(2):e1642. doi: 10.1371/journal.pone.0001642
  • Lopez-Borges S, Lazo PA. The human vaccinia-related kinase 1 (VRK1) phosphorylates threonine-18 within the mdm-2 binding site of the p53 tumour suppressor protein. Oncogene. 2000;19(32):3656–3664. doi: 10.1038/sj.onc.1203709
  • Sevilla A, Santos CR, Barcia R, et al. C-Jun phosphorylation by the human vaccinia-related kinase 1 (VRK1) and its cooperation with the N-terminal kinase of c-Jun (JNK). Oncogene. 2004;23(55):8950–8958. doi: 10.1038/sj.onc.1208015
  • Sevilla A, Santos CR, Vega FM, et al. Human vaccinia-related kinase 1 (VRK1) activates the ATF2 transcriptional activity by novel phosphorylation on thr-73 and ser-62 and cooperates with JNK. J Biol Chem. 2004;279(26):27458–27465. doi: 10.1074/jbc.M401009200
  • Kang TH, Park DY, Kim W, Kim KT. VRK1 phosphorylates CREB and mediates CCND1 expression. J Cell Sci. 2008;121(Pt 18):3035–3041. doi: 10.1242/jcs.026757
  • Barcia R, Lopez-Borges S, Vega FM, et al. Kinetic properties of p53 phosphorylation by the human vaccinia-related kinase 1. Arch Biochem Biophys. 2002;399(1):1–5. doi: 10.1006/abbi.2001.2746
  • Valbuena A, Suarez-Gauthier A, Lopez-Rios F, et al. Alteration of the VRK1-p53 autoregulatory loop in human lung carcinomas. Lung Cancer. 2007;58(3):303–309. doi: 10.1016/j.lungcan.2007.06.023
  • Vega FM, Gonzalo P, Gaspar ML, et al. Expression of the VRK (vaccinia-related kinase) gene family of p53 regulators in murine hematopoietic development. FEBS Lett. 2003;544(1–3):176–180. doi: 10.1016/S0014-5793(03)00501-5
  • Liu ZC, Cao K, Xiao ZH, et al. VRK1 promotes cisplatin resistance by up-regulating c-MYC via c-Jun activation and serves as a therapeutic target in esophageal squamous cell carcinoma. Oncotarget. 2017;8(39):65642–65658. doi: 10.18632/oncotarget.20020
  • Colmenero-Repiso A, Gómez-Muñoz MA, Rodríguez-Prieto I, et al. Identification of VRK1 as a new neuroblastoma tumor progression marker regulating cell proliferation. Cancers (Basel). 2020;12(11):3465. doi: 10.3390/cancers12113465
  • Sun X, Zhao W, Wang Q, Zhao J, Yang D, Yang Y. Inhibition of VRK1 suppresses proliferation and migration of vascular smooth muscle cells and intima hyperplasia after injury via mTorc1/β-catenin axis. BMB Rep. 2022;55(5):244–249. doi: 10.5483/BMBRep.2022.55.5.019
  • Carrión-Marchante R, Frezza V, Salgado-Figueroa A, et al. DNA aptamers against vaccinia-related kinase (VRK) 1 block proliferation in MCF7 breast cancer cells. Pharmaceuticals (Basel). 2021;14(5). 473. doi: 10.3390/ph14050473
  • Fernandez IF, Blanco S, Lozano J, et al. VRK2 inhibits mitogen-activated protein kinase signaling and inversely correlates with ErbB2 in human breast cancer. Mol Cell Biol. 2010;30(19):4687–4697. doi: 10.1128/MCB.01581-09
  • Fernandez IF, Perez-Rivas LG, Blanco S, Castillo-Dominguez AA, Lozano J, Lazo PA. VRK2 anchors KSR1-MEK1 to endoplasmic reticulum forming a macromolecular complex that compartmentalizes MAPK signaling. Cell Mol Life Sci. 2012;69(22):3881–3893. doi: 10.1007/s00018-012-1056-8
  • Vega FM, Sevilla A, Lazo PA. Lazo PA: p53 stabilization and accumulation induced by human vaccinia-related kinase 1. Mol Cell Biol. 2004;24(23):10366–10380. doi: 10.1128/MCB.24.23.10366-10380.2004
  • Cartwright TN, Harris RJ, Meyer SK, Mon AM, Watson NA, Tan C, Marcelot A, Wang F, Zinn-Justin S, Traktman P, Higgins JMG. Dissecting the roles of haspin and VRK1 in histone H3 phosphorylation during mitosis. Sci Rep. 2022;12(1):11210. doi: 10.1038/s41598-022-15339-8
  • Ryu HG, Jung Y, Lee N, et al. HNRNP A1 promotes lung cancer cell proliferation by modulating VRK1 translation. Int J Mol Sci. 2021;22(11):5506. doi: 10.3390/ijms22115506
  • Choi YH, Lim JK, Jeong MW, et al. HnRNP A1 phosphorylated by VRK1 stimulates telomerase and its binding to telomeric DNA sequence. Nucleic Acids Res. 2012;40(17):8499–8518. doi: 10.1093/nar/gks634
  • Choi YH, Park CH, Kim W, Ling H, Kang A, Chang MW, Im SK, Jeong HW, Kong YY, Kim KT, Milstone DS. Vaccinia-related kinase 1 is required for the maintenance of undifferentiated spermatogonia in mouse male germ cells. PLOS ONE. 2010;5(12):e15254. doi: 10.1371/journal.pone.0015254
  • Wiebe MS, Nichols RJ, Molitor TP, et al. Mice deficient in the serine/threonine protein kinase VRK1 are infertile due to a progressive loss of spermatogonia. Biol Reprod. 2010;82(1):182–193. doi: 10.1095/biolreprod.109.079095
  • Schober CS, Aydiner F, Booth CJ, et al. The kinase VRK1 is required for normal meiotic progression in mammalian oogenesis. Mech Dev. 2011;128(3–4):178–190. doi: 10.1016/j.mod.2011.01.004
  • Kelly AE, Ghenoiu C, Xue JZ, et al. Survivin reads phosphorylated histone H3 threonine 3 to activate the mitotic kinase aurora B. Science. 2010;330(6001):235–239. doi: 10.1126/science.1189505
  • Jeong MW, Kang TH, Kim W, et al. Mitogen-activated protein kinase phosphatase 2 regulates histone H3 phosphorylation via interaction with vaccinia-related kinase 1. Mol Biol Cell. 2013;24(3):373–384. doi: 10.1091/mbc.E12-06-0456
  • Yamagishi Y, Honda T, Tanno Y, et al. Two histone marks establish the inner centromere and chromosome bi-orientation. Science. 2010;330(6001):239–243. doi: 10.1126/science.1194498
  • Berenguer I, López-Jiménez P, Mena I, Viera A, Page J, González-Martínez J, Maestre C, Malumbres M, Suja JA, Gómez R. Haspin participates in AURKB recruitment to centromeres and contributes to chromosome congression in male mouse meiosis. J Cell Sci. 2022;135(13). doi: 10.1242/jcs.259546
  • Hirota T, Lipp JJ, Toh BH, et al. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature. 2005;438(7071):1176–1180. doi: 10.1038/nature04254
  • Ivanovska I, Khandan T, Ito T, et al. A histone code in meiosis: the histone kinase, NHK-1, is required for proper chromosomal architecture in drosophila oocytes. Genes Dev. 2005;19(21):2571–2582. doi: 10.1101/gad.1348905
  • Lancaster OM, Breuer M, Cullen CF, et al. The meiotic recombination checkpoint suppresses NHK-1 kinase to prevent reorganisation of the oocyte nucleus in Drosophila. PLOS Genet. 2010;6(10):e1001179. doi: 10.1371/journal.pgen.1001179
  • Kim J, Choi YH, Chang S, et al. Defective folliculogenesis in female mice lacking vaccinia-related kinase 1. Sci Rep. 2012;2(1):468. doi: 10.1038/srep00468
  • Lancaster OM, Cullen CF, Ohkura H. NHK-1 phosphorylates BAF to allow karyosome formation in the drosophila oocyte nucleus. J Cell Bio. 2007;179(5):817–824. doi: 10.1083/jcb.200706067
  • Feinstein TN, Linstedt AD, Glick B. Mitogen-activated protein kinase kinase 1-dependent golgi unlinking occurs in G2 phase and promotes the G2/M cell cycle transition. Mol Biol Cell. 2007;18(2):594–604. doi: 10.1091/mbc.E06-06-0530
  • Shaul YD, Seger R. ERK1c regulates golgi fragmentation during mitosis. J Cell Bio. 2006;172(6):885–897. doi: 10.1083/jcb.200509063
  • Ruan Q, Wang Q, Xie S, et al. Polo-like kinase 3 is Golgi localized and involved in regulating Golgi fragmentation during the cell cycle. Exp Cell Res. 2004;294(1):51–59. doi: 10.1016/j.yexcr.2003.10.022
  • Lopez-Sanchez I, Sanz-Garcia M, Lazo PA. Plk3 interacts with and specifically phosphorylates VRK1 in Ser342, a downstream target in a pathway that induces golgi fragmentation. Mol Cell Biol. 2009;29(5):1189–1201. doi: 10.1128/MCB.01341-08
  • Blanco S, Klimcakova L, Vega FM, et al. The subcellular localization of vaccinia-related kinase-2 (VRK2) isoforms determines their different effect on p53 stability in tumour cell lines. FEBS J. 2006;273(11):2487–2504. doi: 10.1111/j.1742-4658.2006.05256.x
  • Sanz-Garcia M, Lopez-Sanchez I, Lazo PA. Proteomics identification of nuclear ran GTPase as an inhibitor of human VRK1 and VRK2 (vaccinia-related kinase) activities. Mol & Cell Proteomics. 2008;7(11):2199–2214. doi: 10.1074/mcp.M700586-MCP200
  • Adam S, Dabin J, Polo SE. Chromatin plasticity in response to DNA damage: the shape of things to come. DNA Repair. 2015;32:120–126. doi: 10.1016/j.dnarep.2015.04.022
  • Santos Á D, Cook AW, Gough RE, Schilling M, Olszok NA, Brown I, Wang L, Aaron J, Martin-Fernandez ML, Rehfeldt F, Toseland CP. DNA damage alters nuclear mechanics through chromatin reorganization. Nucleic Acids Res. 2021;49(1):340–353. doi: 10.1093/nar/gkaa1202
  • Navarro-Carrasco E, Campos-Díaz A, Monte-Serrano E, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, Jiménez CR, Lazo PA. Loss of VRK1 alters the nuclear phosphoproteome in the DNA damage response to doxorubicin. Chem Biol Interact. 2024;2024:110908. doi: 10.1016/j.cbi.2024.110908
  • Navarro-Carrasco E, Monte-Serrano E, Campos-Díaz A, et al. VRK1 regulates sensitivity to oxidative stress by altering histone epigenetic modifications and the nuclear phosphoproteome in tumor cells. Int J Mol Sci. 2024;25(9):4874. doi: 10.3390/ijms25094874
  • Sanz-Garcia M, Monsalve DM, Sevilla A, et al. Vaccinia-related kinase 1 (VRK1) is an upstream nucleosomal kinase required for the assembly of 53BP1 foci in response to ionizing radiation-induced DNA damage. J Biol Chem. 2012;287(28):23757–23768. doi: 10.1074/jbc.M112.353102
  • Barcia-Sanjurjo I, Vazquez-Cedeira M, Barcia R, et al. Sensitivity of the kinase activity of human vaccinia-related kinase proteins to toxic metals. J Biol Inorg Chem. 2013;18(4):473–482. doi: 10.1007/s00775-013-0992-6
  • Salzano M, Vazquez-Cedeira M, Sanz-Garcia M, Valbuena A, Blanco S, Fernandez IF, Lazo PA. Vaccinia-related kinase 1 (VRK1) confers resistance to DNA-damaging agents in human breast cancer by affecting DNA damage response. Oncotarget. 2014;5(N7):1770–1778. doi: 10.18632/oncotarget.1678
  • Monsalve DM, Campillo-Marcos I, Salzano M, Sanz-Garcia M, Cantarero L, Lazo PA. VRK1 phosphorylates and protects NBS1 from ubiquitination and proteasomal degradation in response to DNA damage. Biochim Biophys Acta Mol Cell Res. 2016;1863(4):760–769. doi: 10.1016/j.bbamcr.2016.02.005
  • Martin-Doncel E, Rojas AM, Cantarero L, Lazo PA. VRK1 functional insufficiency due to alterations in protein stability or kinase activity of human VRK1 pathogenic variants implicated in neuromotor syndromes. Sci Rep. 2019;9(1):13381. doi: 10.1038/s41598-019-49821-7
  • Navarro-Carrasco E, Campos-Díaz A, Monte-Serrano E, Rolfs F, de Goeij-de Haas R, Pham TV, Piersma SR, Jiménez CR, Lazo PA. Loss of VRK1 alters the nuclear phosphoproteome in the DNA damage response to doxorubicin. Chem Biol Interact. 2024;391:110908. doi: 10.1016/j.cbi.2024.110908
  • Campillo-Marcos I, Lazo PA. Olaparib and ionizing radiation trigger a cooperative DNA-damage repair response that is impaired by depletion of the VRK1 chromatin kinase. J Exp Clin Cancer Res. 2019;38(1):203. doi: 10.1186/s13046-019-1204-1
  • Maynard S, Fang EF, Scheibye-Knudsen M, et al. DNA damage, DNA repair, aging, and neurodegeneration. Cold Spring Harb Perspect Med. 2015;5(10):a025130. doi: 10.1101/cshperspect.a025130
  • Sun Y, Curle AJ, Haider AM, Balmus G. The role of DNA damage response in amyotrophic lateral sclerosis. Essays Biochem. 2020;64(5):847–861. doi: 10.1042/ebc20200002
  • Madabhushi R, Pan L, Tsai LH. DNA damage and its links to neurodegeneration. Neuron. 2014;83(2):266–282. doi: 10.1016/j.neuron.2014.06.034
  • Lafarga M, Tapia O, Romero AM, et al. Cajal bodies in neurons. RNA Biol. 2017;14(6):712–725. doi: 10.1080/15476286.2016.1231360
  • Tapia O, Narcís JO, Riancho J, et al. Cellular bases of the RNA metabolism dysfunction in motor neurons of a murine model of spinal muscular atrophy: role of cajal bodies and the nucleolus. Neurobiol Dis. 2017;108:83–99. doi: 10.1016/j.nbd.2017.08.004
  • Singh RN, Howell MD, Ottesen EW, et al. Diverse role of survival motor neuron protein. Biochim Biophys Acta Gene Regul Mech. Biochim Biophys Acta Gene Regul Mech. 2017;1860(3):299–315. doi: 10.1016/j.bbagrm.2016.12.008
  • Biton S, Barzilai A, Shiloh Y. The neurological phenotype of ataxia-telangiectasia: solving a persistent puzzle. DNA Repair. 2008;7(7):1028–1038. doi: 10.1016/j.dnarep.2008.03.006
  • Lavin MF. ATM and the Mre11 complex combine to recognize and signal DNA double-strand breaks. Oncogene. 2007;26(56):7749–7758. doi: 10.1038/sj.onc.1210880
  • Houldsworth A. Role of oxidative stress in neurodegenerative disorders: a review of reactive oxygen species and prevention by antioxidants. Brain Com. 2024;6(1):fcad356. doi: 10.1093/braincomms/fcad356
  • Toledo F, Wahl GM. Regulating the p53 pathway: in vitro hypotheses, in vivo veritas. Nat Rev Cancer. 2006;6(12):909–923. doi: 10.1038/nrc2012
  • Meek DW. Tumour suppression by p53: a role for the DNA damage response? Nat Rev Cancer. 2009;9(10):714–723. doi: 10.1038/nrc2716
  • Lazo PA. Reverting p53 activation after recovery of cellular stress to resume with cell cycle progression. Cell Signal. 2017;33:49–58. doi: 10.1016/j.cellsig.2017.02.005
  • Lopez-Sanchez I, Valbuena A, Vazquez-Cedeira M, et al. VRK1 interacts with p53 forming a basal complex that is activated by UV-induced DNA damage. FEBS Lett. 2014;588(5):692–700. doi: 10.1016/j.febslet.2014.01.040
  • Valbuena A, Vega FM, Blanco S. Lazo PA: p53 downregulates its activating vaccinia-related kinase 1, forming a new autoregulatory loop. Mol Cell Biol. 2006;26(13):4782–4793. doi: 10.1128/MCB.00069-06
  • Schon O, Friedler A, Bycroft M, et al. Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol. 2002;323(3):491–501. doi: 10.1016/S0022-2836(02)00852-5
  • Teufel DP, Bycroft M, Fersht AR. Regulation by phosphorylation of the relative affinities of the N-terminal transactivation domains of p53 for p300 domains and Mdm2. Oncogene. 2009;28(20):2112–2118. doi: 10.1038/onc.2009.71
  • Oren M. Decision making by p53: life, death and cancer. Cell Death Differ. 2003;10(4):431–442. doi: 10.1038/sj.cdd.4401183
  • Valbuena A, Castro-Obregon S, Lazo PA, Wu GS. Downregulation of VRK1 by p53 in response to DNA Damage is Mediated by the autophagic pathway. PLOS ONE. 2011;6(2):e17320. doi: 10.1371/journal.pone.0017320
  • Valbuena A, Blanco S, Vega FM, Lazo PA, Fugmann SD. The C/H3 domain of p300 is required to protect VRK1 and VRK2 from their downregulation induced by p53. PLOS ONE. 2008;3(7):e2649. doi: 10.1371/journal.pone.0002649
  • Gorjanacz M, Klerkx EP, Galy V, et al. Caenorhabditis elegans BAF-1 and its kinase VRK-1 participate directly in post-mitotic nuclear envelope assembly. Embo J. 2008;26(1):132–143. doi: 10.1038/sj.emboj.7601470
  • Burger M, Schmitt-Koopmann C, Leroux JC. DNA unchained: two assays to discover and study inhibitors of the DNA clustering function of barrier-to-autointegration factor. Sci Rep. 2020;10(1):12301. doi: 10.1038/s41598-020-69246-x
  • Zheng R, Ghirlando R, Lee MS, et al. Barrier-to-autointegration factor (BAF) bridges DNA in a discrete, higher-order nucleoprotein complex. Proc Natl Acad Sci USA. 2000;97(16):8997–9002. doi: 10.1073/pnas.150240197
  • Margalit A, Segura-Totten M, Gruenbaum Y, et al. Barrier-to-autointegration factor is required to segregate and enclose chromosomes within the nuclear envelope and assemble the nuclear lamina. Proc Natl Acad Sci USA. 2005;102(9):3290–3295. doi: 10.1073/pnas.0408364102
  • Montes de Oca R, Shoemaker CJ, Gucek M, et al. Barrier-to-autointegration factor proteome reveals chromatin-regulatory partners. PLOS ONE. 2009;4(9):e7050. doi: 10.1371/journal.pone.0007050
  • Nichols RJ, Wiebe MS, Traktman P. The vaccinia-related kinases phosphorylate the N’ terminus of BAF, regulating its interaction with DNA and its retention in the nucleus. Mol Biol Cell. 2006;17(5):2451–2464. doi: 10.1091/mbc.E05-12-1179
  • Molitor TP, Traktman P, Hetzer M. Depletion of the protein kinase VRK1 disrupts nuclear envelope morphology and leads to BAF retention on mitotic chromosomes. Mol Biol Cell. 2014;25(6):891–903. doi: 10.1091/mbc.E13-10-0603
  • Torras-Llort M, Medina-Giró S, Escudero-Ferruz P, et al. A fraction of barrier-to-autointegration factor (BAF) associates with centromeres and controls mitosis progression. Commun Biol. 2020;3(1):454. doi: 10.1038/s42003-020-01182-y
  • Jamin A, Wiebe MS. Barrier to autointegration factor (BANF1): interwoven roles in nuclear structure, genome integrity, innate immunity, stress responses and progeria. Curr Opin Cell Biol. 2015;34:61–68. doi: 10.1016/j.ceb.2015.05.006
  • Bengtsson L, Wilson KL. Barrier-to-autointegration factor phosphorylation on ser-4 regulates emerin binding to lamin a in vitro and emerin localization in vivo. Mol Biol Cell. 2006;17(3):1154–1163. doi: 10.1091/mbc.e05-04-0356
  • Skoko D, Li M, Huang Y, et al. Barrier-to-autointegration factor (BAF) condenses DNA by looping. Proc Natl Acad Sci USA. 2009;106(39):16610–16615. doi: 10.1073/pnas.0909077106
  • Zhuang X, Semenova E, Maric D, et al. Dephosphorylation of barrier-to-autointegration factor by protein phosphatase 4 and its role in cell mitosis. J Biol Chem. 2014;289(2):1119–1127. doi: 10.1074/jbc.M113.492777
  • Marcelot A, Petitalot A, Ropars V, et al. Di-phosphorylated BAF shows altered structural dynamics and binding to DNA, but interacts with its nuclear envelope partners. Nucleic Acids Res. 2021;49(7):3841–3855. doi: 10.1093/nar/gkab184
  • Ren Z, Geng J, Xiong C, et al. Downregulation of VRK1 reduces the expression of BANF1 and suppresses the proliferative and migratory activity of esophageal cancer cells. Oncol Lett. 2020;20(2):1163–1170. doi: 10.3892/ol.2020.11654
  • Asencio C, Davidson IF, Santarella-Mellwig R, et al. Coordination of kinase and phosphatase activities by Lem4 enables nuclear envelope reassembly during mitosis. Cell. 2012;150(1):122–135. doi: 10.1016/j.cell.2012.04.043
  • Gorjanacz M. LEM-4 promotes rapid dephosphorylation of BAF during mitotic exit. Nucleus. 2012;4(1):14–17. doi: 10.4161/nucl.22961
  • Kaufmann T, Kukolj E, Brachner A, et al. SIRT2 regulates nuclear envelope reassembly through ANKLE2 deacetylation. J Cell Sci. 2016;129(24):4607–4621. doi: 10.1242/jcs.192633
  • Apridita Sebastian W, Shiraishi H, Shimizu N, et al. Ankle2 deficiency-associated microcephaly and spermatogenesis defects in zebrafish are alleviated by heterozygous deletion of vrk1. Biochem Biophys Res Commun. 2022;624:95–101. doi: 10.1016/j.bbrc.2022.07.070
  • Carrasco Apolinario ME, Umeda R, Teranishi H, Shan M, Phurpa SW, Lai S, Shimizu N, Shiraishi H, Shikano K, et al. Behavioral and neurological effects of Vrk1 deficiency in zebrafish. Biochem Biophys Res Commun. 2023;675:10–18. doi: 10.1016/j.bbrc.2023.07.005
  • Gonzaga-Jauregui C, Lotze T, Jamal L, et al. Mutations in VRK1 associated with complex motor and sensory axonal neuropathy plus microcephaly. JAMA Neurol. 2013;70(12):1491–1498. doi: 10.1001/jamaneurol.2013.4598
  • Bradley CM, Ronning DR, Ghirlando R, et al. Structural basis for DNA bridging by barrier-to-autointegration factor. Nat Struct Mol Biol. 2005;12(10):935–936. doi: 10.1038/nsmb989
  • Burgess JT, Cheong CM, Suraweera A, et al. Barrier-to-autointegration-factor (Banf1) modulates DNA double-strand break repair pathway choice via regulation of DNA-dependent kinase (DNA-PK) activity. Nucleic Acids Res. 2021;49(6):3294–3307. doi: 10.1093/nar/gkab110
  • Bolderson E, Burgess JT, Li J, Gandhi NS, Boucher D, Croft LV, Beard S, Plowman JJ, Suraweera A, Adams MN, et al. Barrier-to-autointegration factor 1 (Banf1) regulates poly [ADP-ribose] polymerase 1 (PARP1) activity following oxidative DNA damage. Nat Commun. 2019;10(1):5501. doi: 10.1038/s41467-019-13167-5
  • Prissette M, Fury W, Koss M, et al. Disruption of nuclear envelope integrity as a possible initiating event in tauopathies. Cell Rep. 2022;40(8):111249. doi: 10.1016/j.celrep.2022.111249
  • Ramon y Cajal S. Un sencillo metodo de coloracion selectiva del reticulo protoplasmatico y sus efectos en los diversos organos nerviosos de vertebrados e invertebrados. Trab Lab Invest Biol (Madrid). 1903;2:129–221.
  • Hebert MD, Matera AG, Silver PA. Self-association of coilin reveals a common theme in nuclear body localization. Mol Biol Cell. 2000;11(12):4159–4171. doi: 10.1091/mbc.11.12.4159
  • Hebert MD, Poole AR. Towards an understanding of regulating cajal body activity by protein modification. RNA Biol. 2017;14(6):761–778. doi: 10.1080/15476286.2016.1243649
  • Staněk D. Coilin and Cajal bodies. Nucleus. 2023;14(1):2256036. doi: 10.1080/19491034.2023.2256036
  • Machyna M, Heyn P, Neugebauer KM. Cajal bodies: where form meets function. Wiley Interdiscip Rev RNA. 2013;4(1):17–34. doi: 10.1002/wrna.1139
  • Hearst SM, Gilder AS, Negi SS, Davis MD, George EM, Whittom AA, Toyota CG, Husedzinovic A, Gruss OJ, Hebert MD. Cajal-body formation correlates with differential coilin phosphorylation in primary and transformed cell lines. J Cell Sci. 2009;122(Pt 11):1872–1881 doi: 10.1242/jcs.044040
  • Geisler MS, Kemp JP Jr., Duronio RJ. Duronio RJ: histone locus bodies: a paradigm for how nuclear biomolecular condensates control cell cycle regulated gene expression. Nucleus. 2023;14(1):2293604. doi: 10.1080/19491034.2023.2293604
  • Suzuki H, Abe R, Shimada M, et al. The 3’ pol II pausing at replication-dependent histone genes is regulated by mediator through cajal bodies’ association with histone locus bodies. Nat Commun. 2022;13(1):2905. doi: 10.1038/s41467-022-30632-w
  • Arias Escayola D, Neugebauer KM. Dynamics and function of nuclear bodies during embryogenesis. Biochemistry. 2018;57(17):2462–2469. doi: 10.1021/acs.biochem.7b01262
  • Nizami Z, Deryusheva S, Gall JG. The cajal body and histone locus body. Cold Spring Harbor Perspect Biol. 2010;2(7):a000653. doi: 10.1101/cshperspect.a000653
  • Machyna M, Kehr S, Straube K, et al. The coilin interactome identifies hundreds of small noncoding RNAs that traffic through cajal bodies. Mol Cell. 2014;56(3):389–399. doi: 10.1016/j.molcel.2014.10.004
  • Morejon-Garcia P, Keren B, Marcos-Alcalde I, et al. Dysfunctional homozygous VRK1-D263G variant impairs the Assembly of Cajal Bodies and DNA damage response in hereditary spastic paraplegia. Neurol Genet. 2021;7(5):e624. doi: 10.1212/nxg.0000000000000624
  • Marcos AT, Martin-Doncel E, Morejon-Garcia P, et al. VRK1 (Y213H) homozygous mutant impairs cajal bodies in a hereditary case of distal motor neuropathy. Ann Clin Transl Neurol. 2020;7(5):808–818. doi: 10.1002/acn3.51050
  • Bos R, Rihan K, Quintana P, El-Bazzal L, Bernard-Marissal N, Da Silva N, Jabbour R, Mégarbané A, Bartoli M, Brocard F, Delague V. Altered action potential waveform and shorter axonal initial segment in hiPSC-derived motor neurons with mutations in VRK1. Neurobiology of Disease. 2022;2022:105609. doi: 10.1016/j.nbd.2021.105609
  • Lee YJ, Rio DC. A mutation in the low-complexity domain of splicing factor hnRNPA1 linked to amyotrophic lateral sclerosis disrupts distinct neuronal RNA splicing networks. Genes Dev. 2024;38(1–2):11–30. doi: 10.1101/gad.351104.123
  • Beijer D, Kim HJ, Guo L, et al. Characterization of HNRNPA1 mutations defines diversity in pathogenic mechanisms and clinical presentation. JCI Insight. 2021;6(14). doi: 10.1172/jci.insight.148363
  • Molitor TP, Traktman P. Molecular genetic analysis of VRK1 in mammary epithelial cells: depletion slows proliferation in vitro and tumor growth and metastasis in vivo. Oncogenesis. 2013;2(6):e48. doi: 10.1038/oncsis.2013.11
  • Mon AM, MacKinnon AC Jr., Traktman P. Traktman P: overexpression of the VRK1 kinase, which is associated with breast cancer, induces a mesenchymal to epithelial transition in mammary epithelial cells. PLOS ONE. 2018;13(9):e0203397. doi: 10.1371/journal.pone.0203397
  • Liu J, Wang Y, He S, et al. Expression of vaccinia-related kinase 1 (VRK1) accelerates cell proliferation but overcomes cell adhesion mediated drug resistance (CAM-DR) in multiple myeloma. Hematology. 2016;21(10):603–612. doi: 10.1080/10245332.2016.1147678
  • Du N, Zhang B, Zhang Y. Downregulation of VRK1 inhibits progression of lung squamous cell carcinoma through DNA damage. Can Respir J. 2023;2023:4533504. doi: 10.1155/2023/4533504
  • Li J, Wang T, Pei L, et al. Expression of VRK1 and the downstream gene BANF1 in esophageal cancer. Biomed Pharmacother. 2017;89:1086–1091. doi: 10.1016/j.biopha.2017.02.095
  • Wang L, Zhai R, Shen H, et al. VRK1 promotes proliferation, migration, and invasion of gastric carcinoma cells by activating β-catenin. Neoplasma. 2021;68(5):1005–1014. doi: 10.4149/neo_2021_210304N278
  • Chen D, Zhou W, Chen J, Wang J. Comprehensively prognostic and immunological analysis of VRK Serine/Threonine kinase 1 in pan-cancer and identification in hepatocellular carcinoma. Aging (Albany NY). 2023;15(24):15504–15524. doi: 10.18632/aging.205389
  • Hennig EE, Mikula M, Rubel T, Dadlez M, Ostrowski J. Comparative kinome analysis to identify putative colon tumor biomarkers. J Mol Med (Berl). 2012;90(4):447–456. doi: 10.1007/s00109-011-0831-6
  • Martin KJ, Patrick DR, Bissell MJ, Fournier MV, Preiss T. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets. PLOS ONE. 2008;3(8):e2994. doi: 10.1371/journal.pone.0002994
  • Zhao X, Chu X, Song L, et al. A novel model incorporating chromatin regulatory factors for risk stratification, prognosis prediction, and characterization of the microenvironment in Wilms tumor. The Journal of Gene Medicine. 2024;2023(1):e3574. doi: 10.1002/jgm.3574
  • Ben Z, Gong L, Qiu Y. High expression of VRK1 is related to poor prognosis in glioma. Pathol Res Pract. 2018;214(1):112–118. doi: 10.1016/j.prp.2017.10.014
  • So J, Mabe NW, Englinger B, Chow KH, Moyer SM, Yerrum S, Trissal MC, Marques JG, Kwon JJ, Shim B, et al. VRK1 as a synthetic lethal target in VRK2 promoter-methylated cancers of the nervous system. JCI Insight. 2022;7(19). doi: 10.1172/jci.insight.158755
  • Varghese RT, Liang Y, Guan T, et al. Survival kinase genes present prognostic significance in glioblastoma. Oncotarget. 2016;7(15):20140–20151. doi: 10.18632/oncotarget.7917
  • Eswaran J, Patnaik D, Filippakopoulos P, Wang F, Stein RL, Murray JW, Higgins JM, Knapp S. Structure and functional characterization of the atypical human kinase haspin. Proc Natl Acad Sci USA. 2009;106(48):20198–20203. doi: 10.1073/pnas.0901989106
  • Fedorov O, Marsden B, Pogacic V, et al. A systematic interaction map of validated kinase inhibitors with ser/thr kinases. Proc Natl Acad Sci USA. 2007;104(51):20523–20528. doi: 10.1073/pnas.0708800104
  • Fedorov O, Sundstrom M, Marsden B, et al. Insights for the development of specific kinase inhibitors by targeted structural genomics. Drug Discov Today. 2007;12(9–10):365–372. doi: 10.1016/j.drudis.2007.03.006
  • Vazquez-Cedeira M, Barcia-Sanjurjo I, Sanz-Garcia M, et al. Differential inhibitor sensitivity between human kinases VRK1 and VRK2. PLOS ONE. 2011;6(8):e23235. doi: 10.1371/journal.pone.0023235
  • Ngow YS, Rajan S, Ye H, Yoon HS. Crystal structure of human Vaccinia-related kinase 1 (VRK1) in complex with AMP-PNP, a non-hydrolysable ATP analog. Protein Science. 2019;28(3):524–532. doi: 10.1002/pro.3552
  • Couñago RM, Allerston CK, Savitsky P, et al. Structural characterization of human vaccinia-related kinases (VRK) bound to small-molecule inhibitors identifies different P-loop conformations. Sci Rep. 2017;7(1):7501. doi: 10.1038/s41598-017-07755-y
  • Dawson MA, Kouzarides T. Cancer epigenetics: from mechanism to therapy. Cell. 2012;150(1):12–27. doi: 10.1016/j.cell.2012.06.013
  • Simó-Riudalbas L, Esteller M. Targeting the histone orthography of cancer: drugs for writers, erasers and readers. Br J Pharmacol. 2015;172(11):2716–2732. doi: 10.1111/bph.12844
  • Fradet-Turcotte A, Canny MD, Escribano-Díaz C, Orthwein A, Leung CC, Huang H, Landry MC, Kitevski-LeBlanc J, Noordermeer SM, Sicheri F, Durocher D. 53BP1 is a reader of the DNA-damage-induced H2A lys 15 ubiquitin mark. Nature. 2013;499(7456):50–54. doi: 10.1038/nature12318
  • Tang J, Cho NW, Cui G, et al. Acetylation limits 53BP1 association with damaged chromatin to promote homologous recombination. Nat Struct Mol Biol. 2013;20(3):317–325. doi: 10.1038/nsmb.2499
  • He X, Zai G, Zhou L, et al. Identification of VRK1 as a novel potential biomarker for prognosis and immunotherapy in hepatocellular carcinoma. J Inflamm Res. 2024;17:1671–1683. doi: 10.2147/JIR.S452505
  • Fan Z, Wang X, Cheng H, Pan M. VRK1 promotes DNA-induced type I interferon production. Mol Biol Rep. 2024;51(1):453. doi: 10.1007/s11033-024-09414-8
  • Shields JA, Meier SR, Bandi M, Mulkearns-Hubert EE, Hajdari N, Dam Ferdinez M, Engel JL, Silver DJ, Shen B, Zhang W, et al. VRK1 is a synthetic–lethal target in VRK2-deficient glioblastoma. Cancer Research. 2022. 82(21):4044–4057. doi: 10.1158/0008-5472.Can-21-4443