1,496
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Review of antibiotic-resistant bacteria and antibiotic resistance genes within the one health framework

, , , &
Article: 2312953 | Received 02 May 2023, Accepted 29 Jan 2024, Published online: 13 Feb 2024

References

  • Ajayi AO. Infection ecology and epidemiology. the COVID-19 pandemic: critical issues and perspectives for infectious disease prevention in Africa. 2020; 1798073. doi: 10.1080/20008686.2020.1798073
  • Bukha KK, Sharif EA, Eldaghayes IM. The one health concept for the threat of severe acute respiratory syndrome coronavirus-2 to marine ecosystems. Int J One Health. 2022;8(1):48–16. A. doi: 10.14202/IJOH.2022.48-57
  • Bhatia R. Implementation framework for one health approach. Indian J Med Res. 2019;149(3):329–331. doi: 10.4103/ijmr.IJMR_1517_18
  • Mackenzie J, Jeggo M. The one health approach—why is it so important? Trop Med Infect Dis. 2019;4(2):88. doi: 10.3390/tropicalmed4020088
  • Aslam B, Khurshid M, Arshad MI, et al. Antibiotic resistance: one health one world outlook. Front Cell Infect Microbiol. 2021;11:11. doi: 10.3389/fcimb.2021.771510
  • McEwen SA, Collignon PJ. Antimicrobial Resistance: a One Health Perspective. Microbiol Spectr. 2018;6(2). doi: 10.1128/microbiolspec.arba-0009-2017
  • Patz JA, Hahn MB. Climate change and human health: a one health approach. Curr Top Microbiol Immunol. 2013;366:141–171. doi: 10.1007/82_2012_274
  • Zinsstag J, Crump L, Schelling E, et al. Climate change and one health. FEMS Microbiol Lett. 2018;365(11):fny085. doi: 10.1093/femsle/fny085
  • Ge XY, Li JL, Yang XL. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013;503(7477):535–538. doi: 10.1038/nature12711
  • Ghanbari MK, Gorji HA, Behzadifar M, et al. One health approach to tackle brucellosis: a systematic review. Trop Med Health. 2020;48(86). doi: 10.1186/s41182-020-00272-1
  • WHO. (2023). One health. [cited 2023 Mar 22]. Available online: https://www.who.int/news-room/fact-sheets/detail/one-health.
  • Basu A, Sandhu H. International Conventions and one health. Indian J Med Res. 2021;153(3):253–255. doi: 10.4103/ijmr.IJMR_644_21
  • Mackenzie JS, McKinnon M, Jeggo M. One health: from concept to practice. Confronting Emerging Zoonoses: The One Health Paradigm. 2014;163–189. doi: 10.1007/978-4-431-55120-1_8
  • Otu A, Effa E, Meseko C, et al. Africa needs to prioritize One Health approaches that focus on the environment, animal health and human health. Nat Med. 2021;27(6):943–946.
  • Sherry NL, Horan KA, Ballard SA, et al. An ISO-certified genomics workflow for identification and surveillance of antimicrobial resistance. Nat Commun. 2023;14(1):60.
  • Meyer B, Mueller MA, Corman VM. Antibodies against MERS coronavirus in dromedary camels, United Arab Emirates, 2003 and 2013. Emerg Infect Dis. 2014;20(4):552–559. doi: 10.3201/eid2004.131746
  • MacLachlan DJ, Hamilton D. Estimation methods for Maximum Residue Limits for pesticides. Regul Toxicol Pharmacol. 2010;58(2):208–218. doi: 10.1016/j.yrtph.2010.05.012
  • Aggarwal D, Ramachandran A. One health approach to address zoonotic diseases. Indian J Community Med. 2020;45(Suppl1):S6–S8. doi: 10.4103/ijcm.IJCM_398_19
  • Bidaisee S, Macpherson CNL. Zoonoses and one health: a review of the literature. J Parasitol Res. 2014;2014:1–8. Article ID 874345: doi: 10.1155/2014/874345
  • Fong IW. Animals and mechanisms of disease transmission. Emerging Zoonoses: A Worldwide Perspective. 2017;15–38. doi: 10.1007/978-3-319-50890-0_2
  • Rahman MT, Sobur MA, Islam MS, et al. Zoonotic diseases: etiology, impact, and control. Microorganisms. 2020;8(9):1405. doi: 10.3390/microorganisms8091405
  • Muehlenbein MP. Human-wildlife contact and emerging infectious diseases. Human-Environment Interactions: Current And Future Directions. 2012;1:79–94. doi: 10.1007/978-94-007-4780-7_4
  • Shah DH, Board MM, Crespo R, et al. The occurrence of salmonella, extended-spectrum β-lactamase producing Escherichia coli and carbapenem resistant non-fermenting Gram-negative bacteria in a backyard poultry flock environment. Zoonoses Public Health. 2020;67(6):742–753. doi: 10.1111/zph.12756
  • Castillo-Ramírez S. Zoonotic Acinetobacter baumannii: the need for genomic epidemiology in a one health context. Lancet Microbe. 2022;3(12):e895–e896. doi: 10.1016/S2666-5247(22)00255-5
  • Elshafiee EA, Nader SM, Dorgham SM, et al. Carbapenem-resistant Pseudomonas Aeruginosa Originating from Farm Animals and People in Egypt. J Vet Res. 2019;63(3):333–337. doi: 10.2478/jvetres-2019-0049
  • Machalaba CC, Loh EH, Daszak P, et al. Emerging diseases from animals. State Of The World 2015: Confronting Hidden Threats To Sustainability. 2015;105–116. doi: 10.5822/978-1-61091-611-0_8
  • Hassell JM, Begon M, Ward MJ, et al. Urbanization and disease emergence: dynamics at the Wildlife-Livestock-Human Interface. Trends Ecol Evol. 2017;32(1):55–67. doi: 10.1016/j.tree.2016.09.012
  • Lindahl JF, Grace D. The consequences of human actions on risks for infectious diseases: a review. Infect Ecol Epidemiol. 2015;5(1):1. doi: 10.3402/iee.v5.30048
  • Viegas S. Climate change and the need of a one health approach – from science to policy. Eur J Public Health. 2021 October;31(Issue Supplement_3):ckab164.271. doi: 10.1093/eurpub/ckab164.271
  • Zhang R, Tang X, Liu J. From concept to action: a united, holistic and one health approach to respond to the climate change crisis. Infect Dis Poverty. 2022;11:17. doi: 10.1186/s40249-022-00941-9
  • Wu X, Lu Y, Zhou S, et al. Impact of climate change on human infectious diseases: empirical evidence and human adaptation. Environ Int. 2016 Jan;86:14–23. doi: 10.1016/j.envint.2015.09.007 PMID: 26479830.
  • Feingold S. Climate change is worsening infectious diseases: new research (World Economic Forum, Ed.). World Economic Forum; 2022. Available from: https://www.weforum.org/agenda/2022/08/climate-change-making-infectious-diseases-worse/
  • Buttke D, Wild M, Monello R, et al. Managing wildlife disease under climate change. Ecohealth. 2021;18(4):406–410. doi: 10.1007/s10393-021-01542-y
  • Roberts CM, O’Leary BC, Hawkins JP. Climate change mitigation and nature conservation both require higher protected area targets. Philos Trans R Soc London Ser B Biol Sci. 2020;375(1794):20190121. doi: 10.1098/rstb.2019.0121
  • Flahault A, de Castaneda RR, Bolon I. Climate change and infectious diseases. Public Health Rev. 2016;37(1):21. doi: 10.1186/s40985-016-0035-2
  • Larsson D, Flach CF. Antibiotic resistance in the environment. Nature Rev Microbiol. 2022;20(5):257–269. doi: 10.1038/s41579-021-00649-x
  • Polianciuc SI, Gurzău AE, Kiss B, et al. Antibiotics in the environment: causes and consequences. Med Pharm Rep. 2020;93(3):231–240. doi: 10.15386/mpr-1742
  • Thompson LA, Darwish WS. Environmental chemical contaminants in food: review of a global problem. J Toxicol. 2019;2019:2345283. doi: 10.1155/2019/2345283
  • Badau E. A one health perspective on the issue of the antibiotic resistance. Parasite. 2021;28:16. doi: 10.1051/parasite/2021006
  • Velazquez-Meza ME, Galarde-López M, Carrillo-Quiróz B, et al. Antimicrobial resistance: one health approach. Vet World. 2022;15(3):743–749. doi: 10.14202/vetworld.2022.743-749
  • WHO. One health approach to tackle antimicrobial resistance in South East Asia. BMJ. 2017:j3625. doi: 10.1136/bmj.j3625
  • Munita JM, Arias CA. Mechanisms of antibiotic resistance. Fifth Edition. Virulence Mechanisms Of Bacterial Pathogens. 2016;4(2):481–511. doi: 10.1128/microbiolspec.vmbf-0016-2015
  • Ventola CL. The antibiotic resistance crisis: part 1: causes and threats. Pharm Ther. 2015;40(4):277–283.
  • Aminov RI. A brief history of the Antibiotic Era: lessons learned and challenges for the future. Front Microbiol. 2010;1(134). doi: 10.3389/fmicb.2010.00134
  • Graham K, Sinyangwe C, Nicholas S, et al. Rational use of antibiotics by community health workers and caregivers for children with suspected pneumonia in Zambia: a cross-sectional mixed methods study. BMC Public Health. 2016;16(1). doi: 10.1186/s12889-016-3541-8
  • Alemkere G, Tenna A, Engidawork E, et al. Antibiotic use practice and predictors of hospital outcome among patients with systemic bacterial infection: identifying targets for antibiotic and health care resource stewardship. Plos One. 2019;14(2):e0212661. doi: 10.1371/journal.pone.0212661
  • Flores-Mireles AL, Walker JN, Caparon M, et al. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nature Rev Microbiol. 2015;13(5):269–284. doi: 10.1038/nrmicro3432
  • Sukumaran V, Senanayake S. Bacterial skin and soft tissue infections. Aust Prescr. 2016;39(5):159–163. doi: 10.18773/austprescr.2016.058
  • Workowski KA. Sexually transmitted infections treatment guidelines, 2021. MMWR Recomm Rep. 2021;70(4):1–187. doi: 10.15585/mmwr.rr7004a1
  • Labi A-K, Obeng-Nkrumah N, Dayie NTKD, et al. Antimicrobial use in hospitalized patients: a multicentre point prevalence survey across seven hospitals in Ghana. JAC Antimicrob Resist. 2021;3(3). doi: 10.1093/jacamr/dlab087
  • Enzler MJ, Berbari E, Osmon DR. Antimicrobial Prophylaxis in Adults. Mayo Clin Proc. 2011;86(7):686–701. doi: 10.4065/mcp.2011.0012
  • Zegers SH, Dieleman J, van der Bruggen T, et al. The influence of antibiotic prophylaxis on bacterial resistance in urinary tract infections in children with spina bifida. BMC Infect Dis. 2017;17(1):63. doi: 10.1186/s12879-016-2166-y
  • Chang Y, Chusri S, Sangthong R, et al. Clinical pattern of antibiotic overuse and misuse in primary healthcare hospitals in the southwest of China. PloS One. 2019;14(6):e0214779. doi: 10.1371/journal.pone.0214779
  • Doron S, Davidson LE. Antimicrobial Stewardship. Mayo Clin Proc. 2011;86(11):1113–1123. doi: 10.4065/mcp.2011.0358
  • Lhermie G, Gröhn YT, Raboisson D. Addressing antimicrobial resistance: an overview of priority actions to prevent suboptimal antimicrobial use in food-animal production. Front Microbiol. 2017;7:7. doi: 10.3389/fmicb.2016.02114
  • Manyi-Loh C, Mamphweli S, Meyer E, et al. Antibiotic Use in agriculture and its consequential resistance in environmental sources: Potential public health implications. Molecules (Basel, Switzerland). 2018;23(4):795. doi: 10.3390/molecules23040795
  • Agyare C, Boamah VE, Osei CNZ, et al. Antibiotic use in poultry production and its effects on bacterial resistance. Antimicrobial Resistance - a Global Threat. 2018. doi: 10.5772/intechopen.79371
  • Lekagul A, Tangcharoensathien V, Mills A, et al. How antibiotics are used in pig farming: a mixed-methods study of pig farmers, feed mills and veterinarians in Thailand. BMJ Global Health. 2020;5(2):e001918. doi: 10.1136/bmjgh-2019-001918
  • Marshall BM, Levy SB. Food animals and antimicrobials: impacts on human health. Clinical Microbiology Reviews. 2011;24(4):718–733. doi: 10.1128/cmr.00002-11
  • Md Z H, Kabir SML, Md M K. Antimicrobial uses for livestock production in developing countries. Vet World. 2021;14(1):210–221. doi: 10.14202/vetworld.2021.210-221
  • Mahady G. Medicinal plants for the prevention and treatment of bacterial infections. Curr Pharm Des. 2005;11(19):2405–2427. doi: 10.2174/1381612054367481
  • Van Boeckel TP, Brower C, Gilbert M, et al. Global trends in antimicrobial use in food animals. Proc Nat Acad Sci. 2015;112(18):5649–5654. doi: 10.1073/pnas.1503141112
  • Collignon P, McEwen S. One health—its importance in helping to Better Control Antimicrobial Resistance. Trop Med Infect Dis. 2019;4(1):22. doi: 10.3390/tropicalmed4010022
  • Costa MC, Bessegatto JA, Alfieri AA, et al. Different antibiotic growth promoters induce specific changes in the cecal microbiota membership of broiler chicken. Plos One. 2017;12(2):e0171642. doi: 10.1371/journal.pone.0171642
  • McKenna M. Antibiotics set to flood Florida’s troubled orange orchards. Nature. 2019;567(7748):302–303. doi: 10.1038/d41586-019-00878-4
  • McManus PS, Stockwell VO, Sundin GW, et al. Antibiotic use in plant agriculture. Annu Rev Phytopathol. 2002;40:443–465. doi: 10.1146/annurev.phyto.40.120301.093927
  • Chopra I, Roberts M. Tetracycline antibiotics: mode of action, applications, molecular biology, and epidemiology of bacterial resistance. Microbiol Mol Biol Rev. 2001;65(2):232–260. doi: 10.1128/MMBR.65.2.232-260.2001
  • Sternberg Lewerin S. Tuberculosis and one health – what is in a Name? Front Vet Sci. 2015;2:54. doi: 10.3389/fvets.2015.00054
  • Pepper IL, Brooks JP, Gerba CP. Land application of organic residuals: municipal biosolids and animal manures. Environmental And Pollution Science. 2019;419–434. doi: 10.1016/b978-0-12-814719-1.00023-9
  • Haenni M, Dagot C, Chesneau O, et al. Environmental contamination in a high-income country (France) by antibiotics, antibiotic-resistant bacteria, and antibiotic resistance genes: status and possible causes. Environ Int. 2022;159:107047. doi: 10.1016/j.envint.2021.107047
  • Robinson TP, Bu DP, Carrique-Mas J, et al. Antibiotic resistance is the quintessential one health issue. Trans R Soc Trop Med. 2016;110(7):377–380. doi: 10.1093/trstmh/trw048
  • Serwecińska L. Antimicrobials and Antibiotic-Resistant Bacteria: a risk to the environment and to Public Health. Water. 2020;12(12):3313. doi: 10.3390/w12123313
  • WHO. Global Antimicrobial Resistance and Use Surveillance System (GLASS) Report 2022. (who.int). 2022 [ cited 2023 December 10].
  • Karami P, Mohajeri P, Yousefi Mashouf R, et al. Molecular characterization of clinical and environmental Pseudomonas aeruginosa isolated in a burn center. Saudi J Biol Sci. 2019;26(7):1731–1736. doi: 10.1016/j.sjbs.2018.07.009
  • Ojer-Usoz E, González D, Vitas AI. Clonal diversity of ESBL-Producing Escherichia coli isolated from environmental, human and food samples. Int J Environ Res Public Health. 2017;14(7):676. doi: 10.3390/ijerph14070676
  • Matteelli A, Roggi A, Carvalho ACC. Extensively drug-resistant tuberculosis: epidemiology and management. CLEP. 2014;111. doi: 10.2147/clep.s35839
  • Mensah N, Tang Y, Cawthraw S, et al. Determining antimicrobial susceptibility in Salmonella enterica serovar typhimurium through whole genome sequencing: a comparison against multiple phenotypic susceptibility testing methods. BMC Microbiol. 2019;19(1). doi: 10.1186/s12866-019-1520-9
  • Prestinaci F, Pezzotti P, Pantosti A. Antimicrobial resistance: a global multifaceted phenomenon. Pathog Glob Health. 2015;109(7):309–318. doi: 10.1179/2047773215y.0000000030
  • Terreni M, Taccani M, Pregnolato M. New antibiotics for multidrug-resistant bacterial strains: latest research developments and future perspectives. Molecules. 2021;26(9):2671. doi: 10.3390/molecules26092671
  • Friedman ND, Temkin E, Carmeli Y. The negative impact of antibiotic resistance. Clin Microbiol Infect. 2016;22(5):416–422. doi: 10.1016/j.cmi.2015.12.002
  • Debnath T, Bhowmik S, Islam T, et al. Presence of Multidrug-Resistant Bacteria on Mobile Phones of Healthcare Workers Accelerates the Spread of Nosocomial Infection and regarded as a threat to Public Health in Bangladesh. J Microsc Ultrastruct. 2018;6(3):165–169. doi: 10.4103/JMAU.JMAU_30_18
  • Mushabati NA, Samutela MT, Yamba K, et al. Bacterial contamination of mobile phones of healthcare workers at the University Teaching Hospital, Lusaka, Zambia. Infection Prevention In Practice. 2021;3(2):100126. doi: 10.1016/j.infpip.2021.100126
  • Almagor J, Temkin E, Benenson I, et al. The impact of antibiotic use on transmission of resistant bacteria in hospitals: insights from an agent-based model. PloS One. 2018;13(5):e0197111. doi: 10.1371/journal.pone.0197111
  • Dalton KR, Rock C, Carroll KC, et al. One health in hospitals: how understanding the dynamics of people, animals, and the hospital built-environment can be used to better inform interventions for antimicrobial-resistant gram-positive infections. Antimicrob Resist Infect Control. 2020;9(1). doi: 10.1186/s13756-020-00737-2
  • Hoelzer K, Wong N, Thomas J, et al. Antimicrobial drug use in food producing animals and associated human health risks: what, and how strong, is the evidence? BMC Vet Res. 2017;13(1):211. doi: 10.1186/s12917-017-1131-3
  • Tian M, He X, Feng Y, et al. Pollution by Antibiotics and Antimicrobial Resistance in LiveStock and poultry manure in China, and countermeasures. Antibiotics. 2021;10(5):539. doi: 10.3390/antibiotics10050539
  • Durso LM, Cook KL. Impacts of antibiotic use in agriculture: what are the benefits and risks? Curr Opin Microbiol. 2014;19:37–44. doi: 10.1016/j.mib.2014.05.019
  • Anyanwu MU, Nwobi OC, Okpala COR, et al. Mobile tigecycline resistance: an emerging health catastrophe requiring urgent one health global intervention. Front Microbiol. 2022;13:13. doi: 10.3389/fmicb.2022.808744
  • Jansen W, van Hout J, Wiegel J, et al. Colistin use in European livestock: veterinary field data on trends and perspectives for further reduction. Vet Sci. 2022;9(11):650. doi: 10.3390/vetsci9110650
  • Maron D, Smith TJ, Nachman KE. Restrictions on antimicrobial use in food animal production: an international regulatory and economic survey. Globalization Health. 2013;9(1):48. doi: 10.1186/1744-8603-9-48
  • Liyanage GY, Weerasekara MM, Manage PM. Screening and quantitative analysis of antibiotic resistance genes in hospital and aquaculture effluent in Sri Lanka as an emerging environmental contaminant. J Natl Sci Foun. Sri Lanka. 2022;50(2):361. doi: 10.4038/jnsfsr.v50i2.10499
  • Koch N, Islam NF, Sonowal S, et al. Environmental antibiotics and resistance genes as emerging contaminants: methods of detection and bioremediation. Curr res Microbial Sci. 2021;2:100027. doi: 10.1016/j.crmicr.2021.100027
  • Baquero F, Coque TM, Martínez J-L, et al. Front Microbiol. 2019;10:10. doi: 10.3389/fmicb.2019.02892
  • Jadeja NB, Worrich A. From gut to mud: dissemination of antimicrobial resistance between animal and agricultural niches. Environ Microbiol. 2022;24(8):3290–3306. doi: 10.1111/1462-2920.15927
  • Guan Y, Jia J, Fan X, et al. Anthropogenic impacts on antibiotic resistance genes and their hosts from pristine to urban river using metagenomic and binning approaches. Aquat Toxicol. 2022;249:106221. doi: 10.1016/j.aquatox.2022.106221
  • Sjöström K, Hickman RA, Tepper V, et al. Antimicrobial resistance patterns in organic and conventional dairy herds in Sweden. Antibiotics. 2020;9(11):834. doi: 10.3390/antibiotics9110834
  • He Y, Yuan Q, Mathieu J, et al. Antibiotic resistance genes from livestock waste: occurrence, dissemination, and treatment. Npj Clean Water. 2020;3(1). doi: 10.1038/s41545-020-0051-0
  • Murray M, Salvatierra G, Dávila-Barclay A, et al. Market chickens as a source of antibiotic-resistant Escherichia coli in a Peri-Urban Community in Lima, Peru. Front Microbiol. 2021;12:635871. doi: 10.3389/fmicb.2021.635871
  • Orlek A, Anjum MF, Mather AE, et al. Factors associated with plasmid antibiotic resistance gene carriage revealed using large-scale multivariable analysis. Sci Rep. 2023;13(1):2500.
  • Schar D, Zhao C, Wang Y. Twenty-year trends in antimicrobial resistance from aquaculture and fisheries in Asia. Nat Commun. 2021;12:5384. doi: 10.1038/s41467-021-25655-8
  • Research and Markets (2023). [cited 2023 July 12]. Available from: https://www.researchandmarkets.com/report/poultry#:~:text=The%20global%20poultry%20market%20grew,(CAGR)%20of%207.6%25
  • Mensah GI, Adjei VY, Vicar EK, et al. Safety of retailed poultry: analysis of Antibiotic Resistance in Escherichia coli from raw chicken and poultry fecal matter from selected farms and retail outlets in Accra, Ghana. Microbiol?Insights. 2022;15:11786361221093278. doi: 10.1177/11786361221093278
  • Bamidele O, Yakubu A, Joseph EB, et al. Antibiotic resistance of bacterial isolates from smallholder poultry droppings in the Guinea Savanna Zone of Nigeria. Antibiotics (Basel, Switzerland). 2022;11(7):973. doi: 10.3390/antibiotics11070973
  • Salmon GR, MacLeod M, Claxton JR, et al. Exploring the landscape of livestock ‘Facts’. Global Food Security. 2020;25:100329. doi: 10.1016/j.gfs.2019.100329
  • Rubiola S, Chiesa F, Dalmasso A, et al. Detection of antimicrobial resistance genes in the milk production environment: impact of Host DNA and sequencing depth. Front Microbiol. 2020;11:1983. doi: 10.3389/fmicb.2020.01983
  • Sahoo S, Behera MR, Mishra B, et al. Antibiotic-resistant bacteria in bovine milk in India. J Adv Vet Anim Res. 2023;10(1):21–29. doi: 10.5455/javar.2023.j648
  • Kang J, Liu Y, Chen X, et al. Metagenomic insights into the antibiotic resistomes of typical Chinese dairy farm environments. Front Microbiol. 2022;13:990272. doi: 10.3389/fmicb.2022.990272
  • Rankin DJ, Rocha EP, Brown SP. What traits are carried on mobile genetic elements, and why? Heredity (Edinb). 2011;106(1):1–10. doi: 10.1038/hdy.2010.24
  • Partridge SR, Kwong SM, Firth N, et al. Mobile Genetic Elements Associated with antimicrobial resistance. Clin Microbiol Rev. 2018;31(4):e00088–17. doi: 10.1128/CMR.00088-17
  • Vale FF, Lehours P, Yamaoka Y. Editorial: the role of Mobile genetic elements in bacterial evolution and their adaptability. Front Microbiol. 2022;13:849667. doi: 10.3389/fmicb.2022.849667
  • Babakhani S, Oloomi M. Transposons: the agents of antibiotic resistance in bacteria. J Basic Microbiol. 2018;58(11):905–917. doi: 10.1002/jobm.201800204
  • Lipszyc A, Szuplewska M, Bartosik D. How do transposable elements activate expression of transcriptionally silent antibiotic resistance genes? Int J Mol Sci. 2022;23(15):8063. doi: 10.3390/ijms23158063
  • Canchaya C, Proux C, Fournous G, et al. Prophage genomics. Microbiol Mol Biol Rev. 2003;67(2):238–276. doi: 10.1128/MMBR.67.2.238-276.2003
  • Colavecchio A, Cadieux B, Lo A, et al. Bacteriophages contribute to the spread of antibiotic resistance genes among foodborne pathogens of the Enterobacteriaceae family – a review. Front Microbiol. 2017;8:1108. doi: 10.3389/fmicb.2017.01108
  • Jian Z, Zeng L, Xu T, et al. Antibiotic resistance genes in bacteria: occurrence, spread, and control. J Basic Microbiol. 2021;61(12):1049–1070. doi: 10.1002/jobm.202100201
  • Tao S, Chen H, Li N, et al. The Spread of Antibiotic Resistance Genes In Vivo Model. Can J Infect Dis Med Microbiol. 2022;2022:3348695. doi: 10.1155/2022/3348695
  • Li Q, Chang W, Zhang H, et al. The role of plasmids in the multiple antibiotic resistance transfer in ESBLs-producing Escherichia coli isolated from wastewater treatment plants. Front Microbiol. 2019;10:633. doi: 10.3389/fmicb.2019.00633
  • Odoi H, Boamah VE, Duah Boakye Y, et al. Sensitivity Patterns, Plasmid Profiles and Clonal Relatedness of Multi-Drug Resistant Pseudomonas aeruginosa Isolated From the Ashanti Region, Ghana. Environ Health Insights. 2022;16:11786302221078117. doi: 10.1177/11786302221078117
  • Berglund B. Environmental dissemination of antibiotic resistance genes and correlation to anthropogenic contamination with antibiotics. Infect Ecol Epidemiol. 2015;5(1):28564. doi: 10.3402/iee.v5.28564
  • FAO, and OECD. OECD-FAO Agricultural Outlook 2020-2029. In: OECD-FAO agricultural outlook. OECD; 2020. doi: 10.1787/1112c23b-en
  • Colomer-Lluch M, Imamovic L, Jofre J, et al. Bacteriophages Carrying Antibiotic Resistance Genes in fecal waste from cattle, pigs, and poultry. Antimicrob Agents Chemother. 2011;55(10):4908–4911. doi: 10.1128/aac.00535-11
  • Aklilu, Ying H. First mecC and mecA positive livestock-associated methicillin resistant staphylococcus aureus (mecC MRSA/LA-MRSA) from Dairy Cattle in Malaysia. Microorganisms. 2020;8(2):147. doi: 10.3390/microorganisms8020147
  • Gharaibeh MH, Shatnawi SQ. An overview of colistin resistance, mobilized colistin resistance genes dissemination, global responses, and the alternatives to colistin: a review. November-2019. 2019;12(11):1735–1746. doi: 10.14202/vetworld.2019.1735-1746
  • Liu YY, Wang Y, Walsh TR, et al. Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis. 2016;16(2):161–168. doi: 10.1016/S1473-3099(15)00424-7
  • Merialdi G, Dottori M, Bonilauri P, et al. Survey of pleuritis and pulmonary lesions in pigs at abattoir with a focus on the extent of the condition and herd risk factors. (London, England : 1997). Vet j. 2012;193(1):234–239. doi: 10.1016/j.tvjl.2011.11.009
  • Fang H, Han L, Zhang H, et al. Dissemination of antibiotic resistance genes and human pathogenic bacteria from a pig feedlot to the surrounding stream and agricultural soils. J Hazard Mater. 2018;357:53–62. doi: 10.1016/j.jhazmat.2018.05.066
  • Liu Z, Klümper U, Shi L, et al. From pig breeding environment to subsequently produced pork: Comparative Analysis of Antibiotic Resistance Genes and bacterial community composition. Front Microbiol. 2019;10:43. doi: 10.3389/fmicb.2019.00043
  • Hedman HD, Vasco KA, Zhang L. A review of antimicrobial resistance in poultry farming within low-resource settings. Animals (Basel). 2020;10(8):1264. doi: 10.3390/ani10081264
  • Su Y, Xin L, Zhang F, et al. Drug resistance analysis of three types of avian-origin carbapenem-resistant Enterobacteriaceae in Shandong Province, China. Poult Sci. 2023;102(3):102483. doi: 10.1016/j.psj.2023.102483
  • Di Francesco CE, Smoglica C, Profeta F, et al. Research note: detection of antibiotic-resistance genes in commercial poultry and turkey flocks from Italy. Poult Sci. 2021;100(5):101084. doi: 10.1016/j.psj.2021.101084
  • Zalewska M, Błażejewska A, Czapko A, et al. Antibiotics and Antibiotic Resistance Genes in animal manure – consequences of its application in agriculture. Front Microbiol. 2021;12. doi: 10.3389/fmicb.2021.610656
  • Nikaido H. Multidrug resistance in bacteria. Annu Rev Biochem. 2009;78(1):119–146. doi: 10.1146/annurev.biochem.78.082907.145923
  • McMillan EA, Gupta SK, Williams LE, et al. Antimicrobial Resistance Genes, Cassettes, and Plasmids Present in Salmonella enterica Associated With United States Food Animals. Front Microbiol. 2019;10:832. doi: 10.3389/fmicb.2019.00832
  • Ellison CK, Dalia TN, Vidal Ceballos A, et al. Retraction of DNA-bound type IV competence pili initiates DNA uptake during natural transformation in Vibrio cholerae. Nat Microbiol. 2018;3(7):773–780. doi: 10.1038/s41564-018-0174-y
  • Nielsen KM, van Weerelt MD, Berg TN, et al. Natural transformation and availability of transforming DNA to Acinetobacter calcoaceticus in soil microcosms. Appl environ microbiol. 1997;63(5):1945–1952. doi: 10.1128/aem.63.5.1945-1952.1997
  • Argudín M, Deplano A, Meghraoui A, et al. Bacteria from animals as a pool of antimicrobial resistance genes. Antibiotics. 2017;6(2):12. doi: 10.3390/antibiotics6020012
  • Hendriksen RS, Bortolaia V, Tate H, et al. Using genomics to track global antimicrobial resistance. Front Public Health. 2019;7:7. doi: 10.3389/fpubh.2019.00242
  • Molbak K. Spread of Resistant Bacteria and Resistance Genes from animals to humans - the public health consequences. J Vet Med Sci. 2004;51(8–9):364–369. doi: 10.1111/j.1439-0450.2004.00788.x
  • Donner L, Staley ZR, Petali J, et al. The Human Health Implications of Antibiotic Resistance in environmental isolates from two Nebraska watersheds. Microbiol Spectr. 2022;10(2). doi: 10.1128/spectrum.02082-21
  • Bhagwat VR. Safety of water used in food production. Food Safety And Human Health. 2019;219–247. doi: 10.1016/B978-0-12-816333-7.00009-6
  • Cabral JP. Water microbiology. Bacterial pathogens and water. Int J Environ Res Public Health. 2010;7(10):3657–3703. doi: 10.3390/ijerph7103657
  • Popkin BM, D’Anci KE, Rosenberg IH. Water, hydration, and health. Nutr Rev. 2010;68(8):439–458. doi: 10.1111/j.1753-4887.2010.00304.x
  • Calero-Cáceres W, Marti E, Olivares-Pacheco J, et al. Editorial: Antimicrobial resistance in aquatic environments. Front Microbiol. 2022;13:13. doi: 10.3389/fmicb.2022.866268
  • Hassoun-Kheir N, Stabholz Y, Kreft J-U, et al. Comparison of antibiotic-resistant bacteria and antibiotic resistance genes abundance in hospital and community wastewater: a systematic review. Sci Total Environ. 2020;743:140804. doi: 10.1016/j.scitotenv.2020.140804
  • Hutinel M, Larsson DGJ, Flach C-F. Antibiotic resistance genes of emerging concern in municipal and hospital wastewater from a major Swedish city. Sci Total Environ. 2022;812:151433. doi: 10.1016/j.scitotenv.2021.151433
  • Schar D, Klein EY, Laxminarayan R, et al. Global trends in antimicrobial use in aquaculture. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-78849-3
  • Pepi M, Focardi S. Antibiotic-resistant bacteria in aquaculture and climate change: a challenge for health in the Mediterranean Area. Int J Environ Res Public Health. 2021;18(11):5723. doi: 10.3390/ijerph18115723
  • Cattoir V, Poirel L, Aubert C, et al. Unexpected occurrence of plasmid-mediated quinolone resistance determinants in Environmental Aeromonasspp. Emerg Infect Dis. 2008;14(2):231–237. doi: 10.3201/eid1402.070677
  • Delannoy S, Hoffer C, Youf R, et al. High throughput screening of antimicrobial resistance genes in gram-negative seafood bacteria. Microorganisms. 2022;10(6):1225. doi: 10.3390/microorganisms10061225
  • Jauregi L, Epelde L, Alkorta I, et al. Antibiotic Resistance in agricultural soil and crops associated to the Application of Cow Manure-Derived Amendments from Conventional and organic livestock farms. Front Vet Sci. 2021;8:8. doi: 10.3389/fvets.2021.633858
  • Jia L, Liu H, Zhao N, et al. Distribution and transfer of antibiotic resistance genes in coastal aquatic ecosystems of Bohai Bay. Water. 2022;14(6):938. doi: 10.3390/w14060938
  • Lassen SB, Md E A, Islam SR, et al. Prevalence of antibiotic resistance genes in pangasianodon hypophthalmus and Oreochromis niloticus aquaculture production systems in Bangladesh. Sci Total Environ. 2022;813:151915. doi: 10.1016/j.scitotenv.2021.151915
  • Cheng X, Lu Y, Song Y, et al. Analysis of antibiotic resistance genes, environmental factors, and Microbial Community from Aquaculture Farms in five provinces, China. Front Microbiol. 2021;12:12. doi: 10.3389/fmicb.2021.679805
  • Cao H, Bougouffa S, Park TJ, et al. Sharing of antimicrobial resistance genes between humans and food animals. mSystems. 2022;7(6):e0077522. doi: 10.1128/msystems.00775-22
  • de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, et al. Antimicrobial resistance genes in bacteria from animal-based foods. Adv Appl Microbiol. 2020;112:143–183. doi: 10.1016/bs.aambs.2020.03.001
  • Li H, Zheng X, Tan L, et al. The vertical migration of antibiotic-resistant genes and pathogens in soil and vegetables after the application of different fertilizers. Environ Res. 2022;203:111884. doi: 10.1016/j.envres.2021.111884
  • Wolters B, Jacquiod S, Sørensen SJ, et al. Bulk soil and maize rhizosphere resistance genes, mobile genetic elements and microbial communities are differently impacted by organic and inorganic fertilization. FEMS Microbiol Ecol. 2018;94(4). doi: 10.1093/femsec/fiy027
  • Yang F, Han B, Gu Y, et al. Swine liquid manure: a hotspot of mobile genetic elements and antibiotic resistance genes. Sci Rep. 2020;10(1). doi: 10.1038/s41598-020-72149-6
  • Gwenzi W, Shamsizadeh Z, Gholipour S, et al. The air-borne antibiotic resistome: occurrence, health risks, and future directions. Sci Total Environ. 2022;804:150154. doi: 10.1016/j.scitotenv.2021.150154
  • de Carvalho FM, Valiatti TB, Santos FF, et al. Exploring the bacteriome and Resistome of Humans and food-producing animals in Brazil. Microbiol Spectr. 2022;10(5). doi: 10.1128/spectrum.00565-22
  • Swarthout JM, Fuhrmeister ER, Hamzah L, et al. Differential overlap in human and animal fecal microbiomes and resistomes in Rural versus urban Bangladesh. Appl environ microbiol. 2022;88(14). doi: 10.1128/aem.00759-22
  • Lawther K, Santos FG, Oyama LB, et al. Resistome Analysis of Global Livestock and soil microbiomes. Front Microbiol. 2022;13:897905. doi: 10.3389/fmicb.2022.897905
  • Ajuwon BI, Roper K, Richardson A, et al. One health approach: a data-driven priority for mitigating outbreaks of emerging and Re-emerging zoonotic infectious diseases. Trop Med Infect Dis. 2021;7(1):4. doi: 10.3390/tropicalmed7010004
  • Sweileh WM, Moh’d Mansour A. Bibliometric analysis of global research output on antimicrobial resistance in the environment (2000–2019). Glob Health Res Policy. 2020;5(1). doi: 10.1186/s41256-020-00165-0
  • Ma Z, Lee S, Jeong KC. Mitigating antibiotic resistance at the livestock-environment Interface: A review. J Of Microb & Biotech. 2019;29(11):1683–1692. doi: 10.4014/jmb.1909.09030
  • Checcucci A, Trevisi P, Luise D, et al. Exploring the Animal Waste Resistome: the spread of antimicrobial resistance genes through the use of livestock manure. Front Microbiol. 2020;11:1416. doi: 10.3389/fmicb.2020.01416