805
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Nano-sized carriers in gene therapy for peritoneal fibrosis in vivo

, , , &
Article: 1331100 | Received 25 Jan 2017, Accepted 11 May 2017, Published online: 15 Jun 2017

References

  • Krediet RT. Advances in peritoneal dialysis. Minerva Urol Nefrol. 2007;59:1–8. Epub 2007 Oct 4.
  • McDonald SP, Marshall MR, Johnson DW, et al. Relationship between dialysis modality and mortality. J Am Soc Nephrol. 2009;20:155–163. Epub 2008 Dec 19.
  • Di Paolo N, Sacchi G. Peritoneal vascular changes in continuous ambulatory peritoneal dialysis (CAPD): an in vivo model for the study of diabetic microangiopathy. Perit Dial Int. 1989;9:41–45. Epub 1989 Jan 1.
  • Hung KY, Huang JW, Tsai TJ, et al. Natural changes in peritoneal equilibration test results in continuous ambulatory peritoneal dialysis patients: a retrospective, seven year cohort survey. Artif Organs. 2000;24:261–264. Epub 2000 May 18.
  • Van Biesen W, Vanholder R, Lameire N. The role of peritoneal dialysis as the first-line renal replacement modality. Perit Dial Int. 2000;20:375–383. Epub 2000 Sep 28.
  • Krediet RT, Lindholm B, Rippe B. Pathophysiology of peritoneal membrane failure. Perit Dial Int. 2000;20 Suppl 4:S22–S42. Epub 2000 Dec 1.
  • Gandhi VC, Humayun HM, Ing TS, et al. Sclerotic thickening of the peritoneal membrane in maintenance peritoneal dialysis patients. Arch Intern Med. 1980;140:1201–1203. Epub 1980 Sep 1.
  • Ronco C, Feriani M, Chiaramonte S, et al. Pathophysiology of ultrafiltration in peritoneal dialysis. Perit Dial Int. 1990;10:119–126. Epub 1990 Jan 1.
  • Margetts PJ, Bonniaud P. Basic mechanisms and clinical implications of peritoneal fibrosis. Perit Dial Int. 2003;23:530–541. Epub 2004 Jan 2.
  • Devuyst O, Margetts PJ, Topley N. The pathophysiology of the peritoneal membrane. J Am Soc Nephrol. 2010;21:1077–1085. Epub 2010 May 8.
  • Loureiro J, Aguilera A, Selgas R, et al. Blocking TGF-β1 protects the peritoneal membrane from dialysate-induced damage. J Am Soc Nephrol. 2011;22:1682–1695. Epub 2011 Jul 12.
  • Wong JKL, Mohseni R, Hamidieh AA, et al. Will nanotechnology bring new hope for gene delivery? Trends Biotechnol. 2017;35:434–451. Epub 2017 Jan 22.
  • Tang Y, Zeng Z, He X, et al. SiRNA crosslinked nanoparticles for the treatment of inflammation-induced liver injury. Adv Sci (Weinh). 2017;4:1600228. Epub 2017 Mar 3.
  • Lee HY, Park HC, Seo BJ, et al. Superior patient survival for continuous ambulatory peritoneal dialysis patients treated with a peritoneal dialysis fluid with neutral pH and low glucose degradation product concentration (Balance). Perit Dial Int. 2005;25:248–255. Epub 2005 Jun 29.
  • Hirahara I, Ishibashi Y, Kaname S, et al. Methylglyoxal induces peritoneal thickening by mesenchymal-like mesothelial cells in rats. Nephrol Dial Transplant. 2009;24:437–447. Epub 2008 Sep 16.
  • Nilsson-Thorell CB, Muscalu N, Andrén AH, et al. Heat sterilization of fluids for peritoneal dialysis gives rise to aldehydes. Perit Dial Int. 1993;13:208–213. Epub 1993 Jan 1.
  • Schalkwijk CG, Posthuma N, ten Brink HJ, et al. Induction of 1,2-dicarbonyl compounds, intermediates in the formation of advanced glycation end-products, during heat-sterilization of glucose-based peritoneal dialysis fluids. Perit Dial Int. 1999;19:325–333. Epub 1999 Oct 3.
  • Nakayama M, Sakai A, Numata M, et al. Hyper-vascular change and formation of advanced glycation endproducts in the peritoneum caused by methylglyoxal and the effect of an anti-oxidant, sodium sulfite. Am J Nephrol. 2003;23:390–394. Epub 2003 Oct 11.
  • De Vriese AS, Tilton RG, Mortier S, et al. Myofibroblast transdifferentiation of mesothelial cells is mediated by RAGE and contributes to peritoneal fibrosis in uraemia. Nephrol Dial Transplant. 2006;21:2549–2555. Epub 2006 Jun 8.
  • Ito T, Yorioka N, Yamamoto M, et al. Effect of glucose on intercellular junctions of cultured human peritoneal mesothelial cells. J Am Soc Nephrol. 2000;11:1969–1979. Epub 2000 Oct 29.
  • Offner FA, Feichtinger H, Stadlmann S, et al. Transforming growth factor-beta synthesis by human peritoneal mesothelial cells. Induction by interleukin-1. Am J Pathol. 1996;148:1679–1688. Epub 1996 May 1.
  • Loureiro J, Schilte M, Aguilera A, et al. BMP-7 blocks mesenchymal conversion of mesothelial cells and prevents peritoneal damage induced by dialysis fluid exposure. Nephrol Dial Transplant. 2010;25:1098–1108. Epub 2010 Jan 14.
  • Peinado H, Quintanilla M, Cano A. Transforming growth factor beta-1 induces snail transcription factor in epithelial cell lines: mechanisms for epithelial mesenchymal transitions. J Biol Chem. 2003;278:21113–21123. Epub 2003 Apr 1.
  • Margetts PJ, Bonniaud P, Liu L, et al. Transient overexpression of TGF-β1 induces epithelial mesenchymal transition in the rodent peritoneum. J Am Soc Nephrol. 2005;16:425–436. Epub 2004 Dec 14.
  • Yokoi H, Kasahara M, Mori K, et al. Peritoneal fibrosis and high transport are induced in mildly pre-injured peritoneum by 3,4-dideoxyglucosone-3-ene in mice. Perit Dial Int. 2013;33:143–154. Epub 2012 Nov 6.
  • Nakamura S, Niwa T. Advanced glycation end-products and peritoneal sclerosis. Semin Nephrol. 2004;24:502–505. Epub 2004 Oct 19.
  • Fujimori A, Naito H, Miyazaki T, et al. Elevation of interleukin 6 in the dialysate reflects peritoneal stimuli and deterioration of peritoneal function. Nephron. 1996;74:471–472. Epub 1996 Jan 1.
  • Carozzi S, Nasini MG, Ravera M, et al. Peritoneal dialysis effluent, cytokine levels, and peritoneal mesothelial cell viability in CAPD: a possible relationship. Adv Perit Dial. 1997;13:7–12. Epub 1997 Jan 1.
  • Lai KN, Lai KB, Lam CW, et al. Changes of cytokine profiles during peritonitis in patients on continuous ambulatory peritoneal dialysis. Am J Kidney Dis. 2000;35:644–652. Epub 2000 Mar 31.
  • Maksic D, Vasilijic S, Colic M, et al. Systemic and intraperitoneal proinflammatory cytokine profiles in patients on continuous ambulatory peritoneal dialysis. Adv Perit Dial. 2009;25:50–55. Epub 2009 Nov 6.
  • Kawanishi H, Fujimori A, Tsuchida K, et al. Markers in peritoneal effluent for withdrawal from peritoneal dialysis: multicenter prospective study in Japan. Adv Perit Dial. 2005;21:134–138. Epub 2006 May 12.
  • Bachus KE, Doty E, Haney AF, et al. Differential effects of interleukin-1 alpha, tumor necrosis factor-alpha, indomethacin, hydrocortisone, and macrophage co-culture on the proliferation of human fibroblasts and peritoneal mesothelial cells. J Soc Gynecol Investig. 1995;2:636–642. Epub 1995 Jul 1.
  • Cunliffe IA, Richardson PS, Rees RC, et al. Effect of TNF, IL-1, and IL-6 on the proliferation of human Tenon’s capsule fibroblasts in tissue culture. Br J Ophthalmol. 1995;79:590–595. Epub 1995 Jun 1.
  • Hoff CM, Margetts PJ. Adenovirus-based transient expression systems for peritoneal membrane research. Perit Dial Int. 2006;26:547–558. Epub 2006 Sep 16.
  • Margetts PJ, Gyorffy S, Kolb M, et al. Antiangiogenic and antifibrotic gene therapy in a chronic infusion model of peritoneal dialysis in rats. J Am Soc Nephrol. 2002;13:721–728. Epub 2002 Feb 22.
  • Yu M-A, Shin K-S, Kim JH, et al. HGF and BMP-7 ameliorate high glucose-induced epithelial-to-mesenchymal transition of peritoneal mesothelium. J Am Soc Nephrol. 2009;20:567–581. Epub 2009 Feb 6.
  • Chaudhary K, Moore H, Tandon A, et al. Nanotechnology and adeno-associated virus-based decorin gene therapy ameliorates peritoneal fibrosis. Am J Physiol Renal Physiol. 2014;307:F777–F782. Epub 2014 Jul 25.
  • Xiao L, Sun L, Liu F-Y, et al. Connective tissue growth factor knockdown attenuated matrix protein production and vascular endothelial growth factor expression induced by transforming growth factor-beta1 in cultured human peritoneal mesothelial cells. Ther Apher Dial. 2010;14:27–34. Epub 2010 May 5.
  • Yoshizawa H, Morishita Y, Watanabe M, et al. TGF-β1-siRNA delivery with nanoparticles inhibits peritoneal fibrosis. Gene Ther. 2015;22:333–340. Epub 2015 Jan 9.
  • Obata Y, Nishino T, Kushibiki T, et al. HSP47 siRNA conjugated with cationized gelatin microspheres suppresses peritoneal fibrosis in mice. Acta Biomater. 2012;8:2688–2696. Epub 2012 Apr 11.
  • Nishino T, Miyazaki M, Abe K, et al. Antisense oligonucleotides against collagen-binding stress protein HSP47 suppress peritoneal fibrosis in rats. Kidney Int. 2003;64:887–896. Epub 2003 Aug 13.
  • Morishita Y, Yoshizawa H, Watanabe M, et al. MicroRNA expression profiling in peritoneal fibrosis. Transl Res. 2016;169:47–66. Epub 2015 Dec 1.
  • Guo H, Leung JC, Chan LY, et al. Ultrasound-contrast agent mediated naked gene delivery in the peritoneal cavity of adult rat. Gene Ther. 2007;14:1712–1720. Epub 2007 Oct 26.
  • Zhou Q, Yang M, Lan H, et al. miR-30a negatively regulates TGF-β1-induced epithelial-mesenchymal transition and peritoneal fibrosis by targeting Snai1. Am J Pathol. 2013;183:808–819. Epub 2013 Jul 9.
  • Yu J-W, Duan W-J, Huang X-R, et al. MicroRNA-29b inhibits peritoneal fibrosis in a mouse model of peritoneal dialysis. Lab Invest. 2014;94:978–990. Epub 2014 Jul 22.
  • Kamimura K, Suda T, Zhang G, et al. Advances in gene delivery systems. Pharmaceut Med. 2011;25:293–306. Epub 2011 Dec 28.
  • Wold WSM, Toth K. Adenovirus vectors for gene therapy, vaccination and cancer gene therapy. Curr Gene Ther. 2013;13:421–433. Epub 2013 Nov 28.
  • Borel F, Kay MA, Mueller C. Recombinant AAV as a platform for translating the therapeutic potential of RNA interference. Mol Ther. 2014;22:692–701. Epub 2013 Dec 20.
  • Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21:583–593. Epub 2008 Oct 16.
  • Barquinero J, Eixarch H, Perez-Melgosa M. Retroviral vectors: new applications for an old tool. Gene Ther. 2004;11 Suppl 1:S3–S9. Epub 2004 Sep 30.
  • Kikuchi A, Aoki Y, Sugaya S, et al. Development of novel cationic liposomes for efficient gene transfer into peritoneal disseminated tumor. Hum Gene Ther. 1999;10:947–955. Epub 1999 May 1.
  • Sato Y, Murase K, Kato J, et al. Resolution of liver cirrhosis using vitamin A-coupled liposomes to deliver siRNA against a collagen-specific chaperone. Nature Biotechnology. 2008;26:431–442.
  • Chithrani BD, Ghazani AA, Chan WCW. Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells. Nano Lett. 2006;6:662–668. Epub 2006 Apr 13.
  • Djagny KB, Wang Z, Xu S. Gelatin: a valuable protein for food and pharmaceutical industries: review. Crit Rev Food Sci Nutr. 2001;41:481–492. Epub 2001 Oct 11.
  • Dias N, Stein CA. Antisense oligonucleotides: basic concepts and mechanisms. Mol Cancer Ther. 2002;1:347–355. Epub 2002 Dec 20.
  • Wahlestedt C, Salmi P, Good L, et al. Potent and nontoxic antisense oligonucleotides containing locked nucleic acids. Proc Natl Acad Sci U S A. 2000;97:5633–5638. Epub 2000 May 11.