109
Views
0
CrossRef citations to date
0
Altmetric
Articles

Physical and mechanical properties of thermally modified short-rotation wood in a closed system

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 94-101 | Received 20 Dec 2022, Accepted 16 Jun 2023, Published online: 28 Jun 2023

References

  • Araújo SO, Vital BR, Mendoza ZMSH, Vieira TA, Carneiro ACO. 2012. Properties of thermorectificated wood of Eucalyptus grandis and Eucalyptus. Scientia Forestalis. 40(95):327–336. https://www.ipef.br/publicacoes/scientia/nr95/cap03.pdf.
  • ASTM D143. 2014. Standard test methods for small clear specimens of timber.
  • Batista DC. 2012. Thermal modification of Eucalyptus grandis wood in industrial scale with the Brazilian processVap HolzSysteme® Doctor thesis, Federal University of Paraná, Brazil.
  • Batista DC, Oliveira JTS, Paes JB, Nisgoski S, Muñiz GIB. 2018. Effect of the Brazilian process of thermal modification on the physical properties of Eucalyptus grandis juvenile wood. Maderas: Ciencia y Tecnología. 20(4):715–724. http://doi.org/10.4067/S0718-221X2018005041701.
  • Batista DC, Tomaselli I, Klitzke RJ. 2011. Effect of time and temperature of thermal modification on the reduction of maximum swelling of Eucalyptus grandis Hill ex Maiden wood. Ciência Florestal. 21(3):533–540. https://doi.org/10.5902/198050983810
  • Bellon KRR. 2013. Thermal modification of wood with the process VAP HolzSysteme® of three planted species, Masters dissertation, Federal University of Paraná, Brazil.
  • Bellon KRR, Loiola PL, Juízo CGF, Marchesan R, Sakowicz E, Klitzke RJ, Rocha MP. 2014. The effect of the thermal modification temperature in the resistance to the parallel compression of fiber for Eucalyptus grandis, Pinus taeda and Tectona grandis wood. Aust J Basic Appl Sci. 8(18):512–520. http://www.ajbasweb.com/old/ajbas/2014/December/512-520.pdf.
  • Blanco-Floréz J, Trugilho PF, Lima JT, Hein PRG, Silva JRM. 2014. Characterization of young wood Tectona grandis L. f. planted in Brazil. Madera y Bosques. 20(1):11–20. http://doi.org/10.21829/myb.2014.201172.
  • Bonduelle GM, Iwakiri S, Trianoski R, Prata JG, Rocha VY. 2015. Analysis of wood density and shrinkage of Tectona grandis wood in axial and radial direction of the tree trunk. Floresta. 45(4):671–680. http://doi.org/10.5380/rf.v45i4.31991.
  • Bossu J, Beauchêne J, Estevez Y, Duplais C, Clair B. 2016. New insights on wood dimensional stability influenced by secondary metabolites: the case of fast-growing tropical species Bagassa guianensis Aubl. PLoS ONE. 11(3):e0150777. https://doi.org/10.1371/journal.pone.0150777.
  • Brazilian Tree Industry. 2020. Annual Report 2020. Brasília: Brazilian Tree Industry. 122 pp, https://iba.org/datafiles/publicacoes/relatorios/relatorio-iba-2020.pdf.
  • Brito TM, Ferreira G, Silva JGMd, Mendonça ARd, Fantuzzi Neto H, Paes JB, Batista DC. 2022. Resistance to biodeterioration of thermally modified Eucalyptus grandis and Tectona grandis short-rotation wood. Wood Mat Sci Eng. https://doi.org/10.1080/17480272.2022.2150985
  • Cademartori PHG, Missio AL, Mattos BD, Gatto DA. 2015. Effect of thermal treatments on technological properties of wood from two Eucalyptus species. Anais da Academia Brasileira de Ciências. 87(1):471–481. https://doi.org/10.1590/0001-3765201520130121
  • Calonego FW, Severo ETD, Ballarin AW. 2012. Physical and mechanical properties of thermally modified wood from E. grandis. Eur J Wood and Wood Products. 70:453–460. https://doi.org/10.1007/s00107-011-0568-5.
  • Cuccui I, Negro F, Zanuttini R, Espinoza M, Allegretti O. 2017. Thermo-vacuum modification of teak wood from fast-growth plantation. BioResources. 121(1):1903–1915. https://doi.org/10.15376/biores.12.1.1903-1915.
  • Esteves BM, Pereira HM. 2009. Wood modification by heat treatment: a review. BioResources. 4(1):370–404. http://doi.org/10.15376/biores.4.1.370-404.
  • Fang S, Yang W, Fu X. 2004. Variation of microfibril angle and its correlation to wood properties in poplars. J Wood Forestry. 15(4):261–267. https://doi.org/10.1007/BF02844949.
  • Glass SV, Zelinka SL. 2010. Moisture relations and physical properties of wood. In: Wood handbook: wood as an engineering material. Madison: United States Department of Agriculture, Forest Service, Forest Products Laboratory; p. 80–98.
  • Hein P, Lima JT. 2012. Relationships between microfibril angle, modulus of elasticity and compressive strength in Eucalyptus wood. Maderas. Ciencia y tecnología. 14(3):267–274. http://doi.org/10.4067/S0718-221X2012005000002.
  • Hill CAS. 2006. Wood modification: chemical, thermal and other processes. West Sussex: John Wiley & Sons, 239 pp.
  • Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT. 2023a. Information on wood. Tectona grandis. (In Portuguese), https://www.ipt.br/informacoes_madeiras3.php?madeira = 78.
  • Instituto de Pesquisas Tecnológicas do Estado de São Paulo – IPT. 2023b. Information on wood. Eucalyptus grandis. (In Portuguese), https://www.ipt.br/informacoes_madeiras3.php?madeira = 13.
  • Kocaefe D, Huang X, Kocaefe Y. 2015. Dimensional stabilization of wood. Current Forestry Reports. 1:151–161. https://doi.org/10.1007/s40725-015-0017-5.
  • Kocaefe D, Poncsak S, Boluk Y. 2008. Effect of thermal treatment on the chemical composition and mechanical properties of birch and aspen. Bioresources. 3(2):571–537.
  • Lengowski EC, Bonfatti EA, Nisgoski S, Bolzon de Muñiz GI, Klock U. 2021. Properties of thermally modified teakwood. Maderas: Ciencia y tecnología. 23(10):1–16. doi:10.4067/S0718-221X2021000100410.
  • Li X, Wu HX, Southerton S. 2011. Transcriptome profiling of Pinus radiata juvenile wood with contrasting stiffness identifies putative candidate genes involved in microfibril orientation and cell wall mechanics. Genomics. 12:480. https://doi.org/10.1186/1471-2164-12-480.
  • Lopes JO, Garcia RA, Nascimento AM, Latorraca JVF. 2014a. Color uniformization of the young teak wood by heat treatment. Revista Árvore. 38(3):561–568. https://doi.org/10.1590/S0100-67622014000300019.
  • Lopes JO, Garcia RA, Nascimento AM, Latorraca JVF. 2014b.Physical properties of heat-treated teak wood. Floresta e Ambiente. 21(4):521–534. https://doi.org/10.1590/2179-8087.040213.
  • Méndez-Mejías LD, Moya R. 2018. Effect of thermo-treatment on the physical and mechanical, color, fungal durability of wood of Tectona grandis and Gmelina arborea from forest plantations. Materials Science (Medžiagotyra). 24(1):59–68. https://doi.org/10.5755/j01.ms.24.1.17545.
  • Menezes WM. 2017. Effect of thermal modification in industrial scale on the quality of Tectona grandis Linn. wood. Doctor thesis, Federal University of Santa Maria, Brazil
  • Miranda I, Souza V, Pereira H. 2011. Wood properties of teak (Tectona grandis) from a mature unmanaged stand in East Timor. J Wood Sci. 57:171–178. https://doi.org/10.1007/s10086-010-1164-8.
  • Modes KS, Santini EJ, Vivian MA, Haselein CR. 2017. Effect of heat treatment on mechanical properties of Pinus taeda and Eucalyptus grandis woods. Ciência Florestal. 27(1):291–302. http://doi.org/10.5902/1980509826467.
  • Moura LF, Brito JO, Bortoletto Júnior G. 2012. Effects of thermal rectification on mass loss and mechanical properties of Eucalyptus grandis and Pinus caribaea var. hondurensis woods. Floresta. 42(2):305–314. http://doi.org/10.5380/rf.v42i2.17635.
  • Niemz P, Sonderegger W, Keplinger T, Jiang J, Lu J. 2023. Physical properties of wood and wood-based materials. In: Niemz P., Teischinger A., Sandberg D., editors. Springer handbook of wood science and technology. Cham, Chapter 6: Springer; p. 281–353.
  • Paes JB, Santos LL, Silva LF, Motta JP, Braz RL, Lombardi LR. 2015. Technological characterization of juvenile wood teak (Tectona grandis) to production of furnitures. Revista Brasileira de Ciências Agrárias. 10(3):437–442. http://doi.org/10.5039/agraria.v10i3a3906.
  • Priadi T, Suharjo AAC, Karlinasari L. 2019. Dimensional stability and colour change of heat-treated young teak wood. Int Wood Prod J. 10(3):119–125. doi:10.1080/20426445.2019.1679430.
  • Treacy M, Evertsen J, Dhubháin ÁN. 2000. A comparison of mechanical and physical wood properties of a range of Sitka spruce provenances. Project Reports. National Council for Forest Research and Development. Wexford, Ireland. 40 pp. http://coford.ie/media/coford/content/publications/projectreports/comparison.pdf.
  • Tsoumis G. 1991. Science and technology of wood: structure, properties, utilization. New York: Chapman & Hall, 494 pp.
  • Winck RA, Fassola HE, Tomazello Filho M, Area MC. 2013. Case study: microfibril angle and its relationship with basic density in Pinus taeda L. wood from silvopastoral systems. O Papel. 71(5):55–61. https://www.researchgate.net/publication/262917148_Case_study_Microfibril_angle_and_its_relationship_with_basic_density_in_Pinus_taeda_L_wood_from_silvopastoral_systems.
  • Yamammoto H, Sassus F, Ninomiya M, Gril J. 2001. A model of anisotropic swelling and shrinking process of wood. Wood Sci Technol. 35:167–181. https://doi.org/10.1007/s002260000074.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.