70
Views
0
CrossRef citations to date
0
Altmetric
Articles

Does sterol availability in a forested headwater stream constitute a nutritional constraint for macroinvertebrates?

ORCID Icon, ORCID Icon, ORCID Icon, & ORCID Icon
Pages 259-271 | Received 16 Dec 2022, Accepted 02 Apr 2023, Published online: 10 Jul 2023

References

  • Behmer ST. 2017. Overturning dogma: tolerance of insects to mixed-sterol diets is not universal. Curr Opin Insect Sci. 23:89–95.
  • Behmer ST, Elias DO. 2000. Sterol metabolic constraints as a factor contributing to the maintenance of diet mixing in grasshoppers (Orthoptera: Acrididae). Physiol Biochem Zool. 73:219–230.
  • Behmer ST, Nes WD. 2003. Insect sterol nutrition and physiology: a global overview. Adv Insect Physiol. 31:1–72.
  • Benfield EF. 1997. Comparison of litterfall input to streams. J North Am Benthol Soc. 16:104–108.
  • Bottová K, Derka T, Beracko P, De Figueroa JMT. 2013. Life cycle, feeding and secondary production of Plecoptera community in a constant temperature stream in Central Europe. Limnologica. 43:27–33.
  • Bourrelly P. 1988. Les algues d'eau douce: initiation à la systématique. Tomes I, II, III [Freshwater algae: introduction to systematics. Vol I, II, and III]. Paris (France): N. Boubée & Cie.
  • Carvalho EM, Graça MAS. 2007. A laboratory study on feeding plasticity of the shredder Sericostoma vittatum Rambur (Sericostomatidae). Hydrobiologia. 575:353–359.
  • Céréghino R. 2002. Shift from a herbivorous to a carnivorous diet during the larval development of some Rhyacophila species (Trichoptera). Aquat Insects. 24:129–135.
  • Crenier C, Arce-Funck J, Bec A, Billoir E, Perrière F, Leflaive J, Guerold F, Felten V, Danger M. 2017. Minor food sources can play a major role in secondary production in detritus-based ecosystems. Freshw Biol. 62:1155–1167.
  • D’Abramo LR, Wright JS, Wright KH, Bordner CE, Conklin DE. 1985. Sterol requirement of cultured juvenile crayfish, Pacifastacus leniusculus. Aquaculture. 49:245–255.
  • Dangles O, Gessner MO, Guérold F, Chauvet E. 2004. Impacts of stream acidification on litter breakdown: implications for assessing ecosystem functioning. J Appl Ecol. 41:365–378.
  • Felten V, Tixier G, Guérold F, De Crespin-De Billy V, Dangles O. 2008. Quantification of diet variability in a stream amphipod: implications for ecosystem functioning. Fund Appl Limnol. 170:303–313.
  • Finlay JC, Khandwala S, Power ME. 2002. Spatial scales of carbon flow in a river food web. Ecology. 83:1845–1859.
  • Gergs R, Steinberger N, Beck B, Basen T, Yohannes E, Schulz R, Martin-Creuzburg D. 2015. Compound-specific δ13C analyses reveal sterol metabolic constraints in an aquatic invertebrate. Rapid Commun. 29:1789–1794.
  • Gessner MO, Chauvet E, Dobson M. 1999. A perspective on leaf litter breakdown in streams. Oikos. 85:377–384.
  • Gessner MO, Graça M. 2005. Ergosterol as a measure of fungal biomass. In: Bärlocher F, Gessner MO, editors. Methods to study litter decomposition. Netherlands: Dordrecht-Springer; p. 189–195.
  • Gilbert LL, Rybczynski R, Warren JT. 2002. Control and biochemical nature of the ecdysteroidogenic pathway. Ann Rev Entomol. 47:883–916.
  • Gossiaux A, Rollin M, Guerold F, Felten V, Laviale M, Bachelet Q, Poupin P, et al. 2020. Temperature and nutrient effects on the relative importance of brown and green pathways for stream ecosystem functioning: a mesocosm approach. Freshw Biol. 65:1239–1255.
  • Graça MAS. 2001. The role of invertebrates on leaf litter decomposition in streams – a review. Int Rev Hydrobiol. 86:383–393.
  • Graça MAS, Maltby L, Calow P. 1993. Importance of fungi in the diet of Gammarus pulex and Asellus aquaticus I: feeding strategies. Oecologia. 93:139–144.
  • Gulis V, Ferreira V, Graça MAS. 2006. Stimulation of leaf litter decomposition and associated fungi and invertebrates by moderate eutrophication: implications for stream assessment. Freshw Biol. 51:1655–1669.
  • Guo F, Kainz MJ, Sheldon F, Bunn SE. 2016. The importance of high-quality algal food sources in stream food webs – current status and future perspectives. Freshw Biol. 61:815–831.
  • Hieber M, Gessner MO. 2002. Contribution of stream detrivores, fungi, and bacteria to leaf breakdown based on biomass estimates. Ecology. 83:1026–1038.
  • Jaramillo-Madrid AC, Ashworth J, Fabris M, Ralph PJ. 2019. Phytosterol biosynthesis and production by diatoms (Bacillariophyceae). Phytochemistry. 163:46–57.
  • Jing XF, Behmer ST. 2020. Insect sterol nutrition: physiological mechanisms, ecology, and applications. Annu Rev Entomol. 65:251–271.
  • Jing XF, Grebenok RJ, Behmer ST. 2014. Diet micronutrient balance matters: How the ratio of dietary sterols/steroids affects development, growth and reproduction in two lepidopteran insects. J Insect Physiol. 67:85–96.
  • Jouni ZE, Zamora J, Wells MA. 2002. Absorption and tissue distribution of cholesterol in Manduca sexta. Arch Insect Biochem Physiol. 49:167–175.
  • Klavina L. 2018. Composition of mosses, their metabolites and environmental stress impacts [dissertation]. Riga (Latvia): University of Latvia.
  • Klavina L, Springe G, Steinberga I, Mezaka A, Ievinsh G. 2018. Seasonal changes of chemical composition in boreonemoral moss species. Environ Exp Biol. 16:9–19.
  • Koussoroplis AM, Bec A, Perga ME, Koutrakis E, Bourdier G, Desvilettes C. 2010. Nutritional importance of minor dietary sources for leaping grey mullet Liza saliens (Mugilidae) during settlement: insights from fatty acid δ13C analysis. Mar Ecol Prog Ser. 404:207–217.
  • Kühmayer T, Guo F, Ebm N, Battin TJ, Brett MT, Bunn SE, Fry B, Kainz MJ. 2020. Preferential retention of algal carbon in benthic invertebrates: stable isotope and fatty acid evidence from an outdoor flume experiment. Freshw Biol. 65:1200–1209.
  • Labed-Veydert T, Felten V, Danger M, Bec A, Laviale M, Cellamare M, Desvilettes C. 2022. Microalgal food sources greatly improve macroinvertebrate growth in detritus-based headwater streams: evidence from an instream experiment. Freshw Biol. 67:1380–1394.
  • Labed-Veydert T, Koussoroplis AM, Bec A, Desvilettes C. 2021. Early spring food resources and the trophic structure of macroinvertebrates in a small headwater stream as revealed by bulk and fatty acid stable isotope analysis. Hydrobiologia. 848:5147–5167.
  • Lafont R, Dauphin-Villemant C, Warren JT, Rees H. 2012. Ecdysteroid chemistry and biochemistry. In: Gilbert LI, editor. Insect endocrinology. Cambridge (MA): Academic Press-Elsevier; p. 106–176.
  • Lancaster J, Bradley DC, Hogan A, Waldron S. 2005. Intraguild omnivory in predatory stream insects. J Anim Ecol. 74:619–629.
  • Lang M, Murat S, Clark AG, Gouppil G, Blais C, Matzkin LC, et al. 2012. Mutations in the neverland gene turned Drosophila pachea into an obligate specialist species. Science. 337:1658–1661.
  • Lund JWG, Kipling C, Le Cren ED. 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimations by counting. Hydrobiologia. 11:143–170.
  • Malmqvist B, Sjöström P, Frick K. 1991. The diet of two species of Isoperla (Plecoptera: Perlodidae) in relation to season, site, and sympatry. Hydrobiologia. 213:191–203.
  • Martin-Creuzburg D, Merkel P. 2016. Sterols of freshwater microalgae: potential implications for zooplankton nutrition. J Plankton Res. 38:865–877.
  • Martin-Creuzburg D, Oexle S, Wacker A. 2014. Thresholds for sterol-limited growth of Daphnia magna: a comparative approach using 10 different sterols. J Chem Ecol. 40:1039–1050.
  • Mondy N, Grossi V, Cathalan E, Delbecque JP, Mermillod-Blondin F, Douady CJ. 2014. Sterols and steroids in a freshwater crustacean (Proasellus meridianus): hormonal response to nutritional input. Invertebr Biol. 133:99–107.
  • Morris TC, Samocha TM, Davis DA, Fox JM. 2011. Cholesterol supplements for Litopenaeus vannamei reared on plant based diets in the presence of natural productivity. Aquaculture. 314:140–144.
  • Mykles DL. 2011. Ecdysteroid metabolism in crustaceans. J Steroid Biochem. 127:196–203.
  • Nguyen-Tu TT, Egasse C, Zeller B, Derenne S. 2007. Chemotaxonomical investigations of fossil and extant beeches. I. Leaf lipids from the extant Fagus sylvatica L. CR Palevol. 6:451–461.
  • Niu J, Chen PF, Tian LX, Liu YJ, Lin HZ, Yang HJ, Liang GY. 2012. Excess dietary cholesterol may have an adverse effect on growth performance of early post-larval Litopenaeus vannamei. J Anim Sci Biotechnol. 3:1–5.
  • Paredes JC, Herren JK, Schüpfer F, Lemaitre B. 2016. The role of lipid competition for endosymbiont mediated protection against parasitoid wasps in Drosophila. ASM Journals. mBio. 7(4):e01006-16.
  • Perry C, Scanlan J, Robin C. 2019. Mining insect genomes for functionally affiliated genes. Curr Opin Insect Sci. 31:114–122.
  • Prasad RBN, Gülz PG. 1989. Composition of lipids of beech (Fagus sylvatica L.) seed oil. Z Naturforsch, C J Biosci. 44:735–738.
  • Quevedo-Ortiz G, Fernández-Calero JM, Luzón-Ortega JM, López-Rodríguez MJ, Tierno de Figueroa JM. 2017. Life cycles and nymphal feeding of Isoperla morenica. Aquat Insects. 38:219–229.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing. https://www.R-project.org/
  • Ren X, He T, Chang Y, Zhao Y, Chen X, Bai S, et al. 2017. The genus Alnus, a comprehensive outline of its chemical constituents and biological activities. Molecules. 22:1383.
  • Sun J, Liu D. 2003. Geometric models for calculating cell biovolume and surface area for phytoplankton. J Plankton Res. 25:1331–1346.
  • Svoboda JA. 1999. Variability of metabolism and function of sterols in insects. Crit Rev Biochem. 34:49–57.
  • Taipale SJ, Hiltunen M, Vuorio K, Peltomaa E. 2016. Suitability of phytosterols alongside fatty acids as chemotaxonomic biomarkers for phytoplankton. Front Plant Sci. 7:212.
  • Talyuli OAC, Bottino-Rojas V, Taracena ML, Soares ALM, Oliveira JHM, Oliveira PL. 2015. The use of a chemically defined artificial diet as a tool to study Aedes aegypti physiology. J Insect Physiol. 83:1–7.
  • Tanaka T, Thingstad TF, Christaki U, Colombet J, Cornet-Barthaux V, Courties C, et al. 2011. Lack of P-limitation of phytoplankton and heterotrophic prokaryotes in surface waters of three anticyclonic eddies in the stratified Mediterranean Sea. Biogeosciences. 8:525–538.
  • Taylor BR, Andrushchenko LV. 2014. Interaction of water temperature and shredders on leaf litter breakdown: a comparison of streams in Canada and Norway. Hydrobiologia. 721:77–88.
  • Teshima SI, Ceccaldi HJ, Patrois J, Kanazawa A. 1975. Bioconversion of desmosterol to cholesterol at various stages of molting cycle in Palaemon serratus Pennant, Crustacea Decapoda. Comp Biochem Physiol B. 50:485–489.
  • Teshima SI, Kanazawa A, Koshio S, Horinouchi K. 1989. Lipid metabolism of the prawn Penaeus japonicus during maturation: variation in lipid profiles of the ovary and hepatopancreas. Comp Biochem Physiol B. 92:45–49.
  • Torres-Ruiz M, Wehr JD. 2020. Complementary information from fatty acid and nutrient stoichiometry data improve stream food web analyses. Hydrobiologia. 847:629–645.
  • Twining CW, Josephson DC, Kraft CE, Brenna JT, Lawrence P, Flecker AS. 2017. Limited seasonal variation in food quality and foodweb structure in an Adirondack stream: insights from fatty acids. Freshw Sci. 36:877–892.
  • Verneaux J. 1977. Sondages quantitatifs de la faune benthique des eaux vives des environs de Besse-en-Chandesse (Puy-De-Do^me) [Quantitative surveys of the benthic fauna of whitewater around Besse-en-Chandesse (Puy-De-Dôme)]. In: Données écologiques [Ecological Data], Annales de Besse-en-Chandesse; p. 3–37.
  • Volkman JK. 2003. Sterols in microorganisms. Appl Microbiol Biotechnol. 60:495–506.
  • Wögerbauer CM, Kelly-Quinn M. 2013. Seasonal variation in diet and feeding strategy of three mayfly species. Biol Environ. 113:1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.