268
Views
0
CrossRef citations to date
0
Altmetric
Articles

Towards modeling data-poor lakes at the regional scale using parameters from data-rich lakes and relationships to lake characteristics

, , , , , & ORCID Icon show all
Pages 388-401 | Received 16 Jun 2022, Accepted 13 Sep 2023, Published online: 02 Feb 2024

References

  • Adrian R, O’Reilly CM, Zagarese H, Baines SB, Hessen DO, Keller W, Livingstone DM, Sommaruga R, Straile D, Van Donk E, et al. 2009. Lakes as sentinels of climate change. Limnol Oceanogr. 54:2283–2297.
  • Bartosiewicz M, Laurion I, Clayer F, Maranger R. 2016. Heat-wave effects on oxygen, nutrients, and phytoplankton can alter global warming potential of gases emitted from a small shallow lake. Environ Sci Technol. 50(12):6267–6275.
  • Bartosiewicz M, Przytulska A, Lapierre JF, Laurion I, Lehmann MF, Maranger R. 2019. Hot tops, cold bottoms: synergistic climate warming and shielding effects increase carbon burial in lakes. Limnol Oceanogr Lett. 4(5):132–144.
  • Bartosiewicz M, Ptak M, Iestyn Woolway R, Sojka M. 2020. On thinning ice: effects of atmospheric warming, changes in wind speed and rainfall on ice conditions in temperate lakes (Northern Poland). J Hydrol. 597:125724.
  • Beier CM, Stella JC, Dovčiak M, Mcnulty SA. 2012. Local climatic drivers of changes in phenology at a boreal-temperate ecotone in eastern North America. Clim Change. 115(2):399–417.
  • Bouffard D, Zdorovennova G, Bogdanov S, Efremova T, Lavanchy S, Palshin N, Terzhevik A, Vinnå LR, Volkov S, Wüest A, et al. 2019. Under-ice convection dynamics in a boreal lake. Inland Waters. 9(2):142–161.
  • Clayer F, Thrane JE, Brandt U, Dörsch P, Wit HA. 2021. Boreal headwater catchment as hot spot of carbon processing from headwater to fjord. J Geophys Res Biogeosci. 126:e2021JG006359.
  • Couture R-M, De Wit HA, Tominaga K, Kiuru P, Markelov I. 2015. Oxygen dynamics in a boreal lake responds to long-term changes in climate, ice phenology, and DOC inputs. J Geophys Res Biogeosci. 120(11):2441–2456.
  • Couture R-M, Moe SJ, Lin Y, Kaste Ø, Haande S, Lyche Solheim A. 2018. Simulating water quality and ecological status of Lake Vansjø, Norway, under land-use and climate change by linking process-oriented models with a Bayesian network. Sci Total Environ. 621:713–724.
  • De Stasio BT, Hill DK, Kleinhans JM, Nibbelink NP, Magnuson JJ. 1996. Potential effects of global climate change on small north-temperate lakes: physics, fish, and plankton. Limnol Oceanogr. 41(5):1136–1149.
  • De Wit HA, Couture R-M, Jackson-Blake L, Futter MN, Valinia S, Austnes K, Guerrero J-L, Lin Y. 2018. Pipes or chimneys? For carbon cycling in small boreal lakes, precipitation matters most. Limnol Oceanogr Lett. 3(3):275–284.
  • Dibike Y, Prowse T, Saloranta T, Ahmed R. 2011. Response of Northern Hemisphere lake-ice cover and lake-water thermal structure patterns to a changing climate. Hydrol Processes. 25(19):2942–2953.
  • Dodds WK, Perkin JS, Gerken JE. 2013. Human impact on freshwater ecosystem services: a global perspective. Environ Sci Technol. 47(16):9061–9068.
  • Fang X, Alam SR, Stefan HG, Jiang L, Jacobson PC, Pereira DL. 2012. Simulations of water quality and oxythermal cisco habitat in Minnesota lakes under past and future climate scenarios. Water Qual Res J. 47(3–4):375–388.
  • Fang X, Stefan HG. 2009. Simulations of climate effects on water temperature, dissolved oxygen, and ice and snow covers in lakes of the contiguous U.S. under past and future climate scenarios. Limnol Oceanogr. 54(6 part 2):2359–2370.
  • Golub M, Thiery W, Marcé R, Pierson D, Vanderkelen I, Mercado D, Woolway RI, Grant L, Jennings E, Schewe J, et al. 2022. A framework for ensemble modelling of climate change impacts on lakes worldwide: the ISIMIP lake sector. Geosci Model Dev Discuss. 15(11):4597–4623.
  • Guzzo MM, Blanchfield PJ. 2017. Climate change alters the quantity and phenology of habitat for lake trout (Salvelinus namaycush) in small boreal shield lakes. Can J Fish Aquat Sci. 74(6):871–884.
  • Hallerbäck S, Huning LS, Love C, Persson M, Stensen K, Gustafsson D, Aghakouchak A. 2021. Warming climate shortens ice durations and alters freeze and breakup patterns in Swedish water bodies. Göttingen (Germany): Copernicus GmbH.
  • Hastie A, Lauerwald R, Weyhenmeyer G, Sobek S, Verpoorter C, Regnier P. 2018. CO2 evasion from boreal lakes: revised estimate, drivers of spatial variability, and future projections. Glob Change Biol. 24(2):711–728.
  • Holubová M, Hejzlar J, Čech M, Vašek M, Blabolil P, Peterka J. 2021. Fluctuations in pelagic fish density linked to ambient conditions. J Fish Biol. 98(3):756–767.
  • Jackson-Blake LA, Starrfelt J. 2015. Do higher data frequency and Bayesian auto-calibration lead to better model calibration? Insights from an application of INCA-P, a process-based river phosphorus model. J Hydrol. 527:641–655.
  • Jacob D, Petersen J, Eggert B, Alias A, Christensen OB, Bouwer LM, Braun A, Colette A, Déqué M, Georgievski G, et al. 2014. EURO-CORDEX: new high-resolution climate change projections for European impact research. Reg Environ Change. 14(2):563–578.
  • Jacobson PC, Stefan HG, Pereira DL. 2010. Coldwater fish oxythermal habitat in Minnesota lakes: influence of total phosphorus, July air temperature, and relative depth. Can J Fish Aquat Sci. 67(12):2002–2013.
  • Jane SF, Hansen GJA, Kraemer BM, Leavitt PR, Mincer JL, North RL, Pilla RM, Stetler JT, Williamson CE, Woolway RI, et al. 2021. Widespread deoxygenation of temperate lakes. Nature. 594(7861):66–70.
  • Jiang LP, Fang X. 2016. Simulation and validation of cisco lethal conditions in Minnesota lakes under past and future climate scenarios using constant survival limits. Water. 8(7):279.
  • Karlsson J, Byström P, Ask J, Ask P, Persson L, Jansson M. 2009. Light limitation of nutrient-poor lake ecosystems. Nature. 460(7254):506–509.
  • Karlsson K-GR. 2003. A 10 year cloud climatology over Scandinavia derived from NOAA Advanced Very High Resolution Radiometer imagery. Int J Climatol. 23(9):1023–1044.
  • Keyler TD, Matthias BG, Hrabik TR. 2019. Siscowet lake charr (Salvelinus namaycush siscowet) visual foraging habitat in relation to daily and seasonal light cycles. Hydrobiologia. 840(1):63–76.
  • Kiuru P, Ojala A, Mammarella I, Heiskanen J, Kämäräinen M, Vesala T, Huttula T. 2018. Effects of climate change on CO2 concentration and efflux in a humic boreal lake: a modeling study. J Geophys Res Biogeosci. 123(7):2212–2233.
  • Knoll LB, Williamson CE, Pilla RM, Leach TH, Brentrup JA, Fisher TJ. 2018. Browning-related oxygen depletion in an oligotrophic lake. Inland Waters. 8(3):255–263.
  • Kraemer BM, Anneville O, Chandra S, Dix M, Kuusisto E, Livingstone DM, Rimmer A, Schladow SG, Silow E, Sitoki LM, et al. 2015. Morphometry and average temperature affect lake stratification responses to climate change. Geophys Res Lett. 42(12):4981–4988.
  • Kraemer BM, Pilla RM, Woolway RI, Anneville O, Ban S, Colom-Montero W, Devlin SP, Dokulil MT, Gaiser EE, Hambright KD, et al. 2021. Climate change drives widespread shifts in lake thermal habitat. Nat Clim Change. 11(6):521–529.
  • Lester NP, Dextrase AJ, Kushneriuk RS, Rawson MR, Ryan PA. 2004. Light and temperature: key factors affecting walleye abundance and production. Trans Am Fish Soc. 133(3):588–605.
  • Los FJ, Blaas M. 2010. Complexity, accuracy and practical applicability of different biogeochemical model versions. J Marine Syst. 81(1–2):44–74.
  • Magee MR, McIntyre PB, Wu CH. 2018. Modeling oxythermal stress for cool-water fishes in lakes using a cumulative dosage approach. Can J Fish Aquat Sci. 75(8):1303–1312.
  • Magnuson JJ, Webster KE, Assel RA, Bowser CJ, Dillon PJ, Eaton JG, Evans HE, Fee EJ, Hall RI, Mortsch LR, et al. 1997. Potential effects of climate changes on aquatic systems: Laurentian Great Lakes and Precambrian Shield region. Hydrol Processes. 11(8):825–871.
  • Markelov I, Couture R-M, Fischer R, Haande S, Van Cappellen P. 2019. Coupling water column and sediment biogeochemical dynamics: modeling internal phosphorus loading, climate change responses, and mitigation measures in Lake Vansjø, Norway. J Geophys Res Biogeosci. 124(12):3847–3866.
  • MATLAB V. 2019. 9.6. 0.1072779 (R2019a). Natick (MA): The MathWorks Inc.
  • Meinshausen M, Smith SJ, Calvin K, Daniel JS, Kainuma MLT, Lamarque JF, Matsumoto K, Montzka SA, Raper SCB, Riahi K, et al. 2011. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim Change. 109(1–2):213–241.
  • Missaghi S, Hondzo M, Herb W. 2017. Prediction of lake water temperature, dissolved oxygen, and fish habitat under changing climate. Clim Change. 141(4):747–757.
  • Moore TN, Mesman JP, Ladwig R, Feldbauer J, Olsson F, Pilla RM, Shatwell T, Venkiteswaran JJ, Delany AD, Dugan H, et al. 2021. Lakeensemblr: an R package that facilitates ensemble modelling of lakes. Environ Model Softw. 143:105101.
  • Moss R, Babiker M, Brinkman S, et al. 2008. Towards new scenarios for analysis of emissions, climate change, impacts, and response strategies. Geneva (Switzerland): UN Intergovernmental Panel on Climate Change.
  • Narisetty NN. 2020. Chapter 4 – Bayesian model selection for high-dimensional data. In: Srinivasa Rao ASR, Rao CR, editors. Handbook of statistics. Amsterdam (Netherlands): Elsevier; p. 207–248.
  • Nürnberg GK. 1995. Quantifying anoxia in lakes. Limnol Oceanogr. 40(6):1100–1111.
  • O’Reilly CM, Sharma S, Gray DK, Hampton SE, Read JS, Rowley RJ, Schneider P, Lenters JD, Mcintyre PB, Kraemer BM, et al. 2015. Rapid and highly variable warming of lake surface waters around the globe. Geophys Res Lett. 42(24):10773–10781.
  • Pilla RM, Couture RM. 2021. Attenuation of photosynthetically active radiation and ultraviolet radiation in response to changing dissolved organic carbon in browning lakes: modeling and parametrization. Limnol Oceanogr. 66(6):2278–2289.
  • Pilla RM, Williamson CE, Adamovich BV, Adrian R, Anneville O, Chandra S, Colom-Montero W, Devlin SP, Dix MA, Dokulil MT, et al. 2020. Deeper waters are changing less consistently than surface waters in a global analysis of 102 lakes. Sci Rep. 10(1):20514.
  • Pilla RM, Williamson CE. 2021. Earlier ice breakup induces changepoint responses in duration and variability of spring mixing and summer stratification in dimictic lakes. Limnol Oceanogr. 67(S1):S173–S183.
  • R Core Team. 2020. R: a language and environment for statistical computing. Vienna (Austria): R Foundation for Statistical Computing.
  • Richardson D, Melles S, Pilla R, Hetherington A, Knoll L, Williamson C, Kraemer B, Jackson J, Long E, Moore K, et al. 2017. Transparency, geomorphology and mixing regime explain variability in trends in lake temperature and stratification across northeastern North America (1975–2014). Water. 9(6):442.
  • Robson BJ. 2014. When do aquatic systems models provide useful predictions, what is changing, and what is next? Environ Model Softw. 61:287–296.
  • Saloranta TM, Andersen T. 2007. Mylake – a multi-year lake simulation model code suitable for uncertainty and sensitivity analysis simulations. Ecol Modell. 207(1):45–60.
  • Schindler DW. 2009. Lakes as sentinels and integrators for the effects of climate change on watersheds, airsheds, and landscapes. Limnol Oceanogr. 54(6 part 2):2349–2358.
  • SMHI. 2017. Modell data per område [Modell data per area] [accessed June 2017]. https://vattenwebb.smhi.se/modelarea/
  • SMHI. 2019. Is på sjöar och vattendrag [Ice on lakes and waterways] [accessed August 31, 2019]. https://www.smhi.se/data/hydrologi/is-pa-sjoar-och-vattendrag
  • Solomon CT, Jones SE, Weidel BC, Buffam I, Fork ML, Karlsson J, Larsen S, Lennon JT, Read JS, Sadro S, et al. 2015. Ecosystem consequences of changing inputs of terrestrial dissolved organic matter to lakes: current knowledge and future challenges. Ecosystems. 18(3):376–389.
  • Stasko AD, Gunn JM, Johnston TA. 2012. Role of ambient light in structuring north-temperate fish communities: potential effects of increasing dissolved organic carbon concentration with a changing climate. Environ Rev. 20(3):173–190.
  • Stefan HG, Fang X. 1994. Dissolved oxygen model for regional lake analysis. Ecol Modell. 71(1-3):37–68.
  • Stefan HG, Fang X, Eaton JG. 2001. Simulated fish habitat changes in North American lakes in response to projected climate warming. Trans Am Fish Soc. 130(3):459–477.
  • Stefan HG, Hondzo M, Eaton JG, McCormick JH. 1995. Validation of a fish habitat model for lakes. Ecol Modell. 82(3):211–224.
  • Stocker TF, editor. 2014. Climate Change 2013: the physical science basis. Working Group 1 (WG1) contribution to the Intergovernmental Panel on Climate Change (IPCC) 5th assessment report (AR5). Cambridge (UK): Cambridge University Press.
  • Thrane J-E, Hessen DO, Andersen T. 2014. The absorption of light in lakes: negative impact of dissolved organic carbon on primary productivity. Ecosystems. 17(6):1040–1052.
  • Toming K, Kotta J, Uuemaa E, Sobek S, Kutser T, Tranvik LJ. 2020. Predicting lake dissolved organic carbon at a global scale. Sci Rep. 10(1):8471.
  • Van Dorst RM, Gårdmark A, Svanbäck R, Huss M. 2020. Does browning-induced light limitation reduce fish body growth through shifts in prey composition or reduced foraging rates? Freshw Biol. 65(5):947–959.
  • Van Zuiden TM, Chen MM, Stefanoff S, Lopez L, Sharma S. 2016. Projected impacts of climate change on three freshwater fishes and potential novel competitive interactions. Divers Distrib. 22(5):603–614.
  • Vasconcelos FR, Diehl S, Rodríguez P, Hedström P, Karlsson J, Byström P. 2019. Bottom-up and top-down effects of browning and warming on shallow lake food webs. Glob Change Biol. 25(2):504–521.
  • Weidel BC, Baglini K, Jones SE, Kelly PT, Solomon CT, Zwart JA. 2017. Light climate and dissolved organic carbon concentration influence species-specific changes in fish zooplanktivory. Inland Waters. 7(2):210–217.
  • Winslow LA, Hansen GJA, Read JS, Notaro M. 2017. Large-scale modeled contemporary and future water temperature estimates for 10774 Midwestern U.S. lakes. Sci Data. 4(1):170053.
  • Woolway RI, Kraemer BM, Lenters JD, Merchant CJ, O’Reilly CM, Sharma S. 2020. Global lake responses to climate change. Nat Rev Earth Environ. 1(8):388–403.
  • Zentner DL, Cross TK, Raabe JK, Jacobson PC. 2019. Using GIS to predict habitat in lakes: an example using nearshore substrate categories. Limnol Oceanogr. 17(1):1–16.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.