221
Views
0
CrossRef citations to date
0
Altmetric
Articles

Carbon and nutrient sequestration in small impoundments: a regional study with global implications

, , , , & ORCID Icon
Pages 374-387 | Received 13 Feb 2023, Accepted 12 Sep 2023, Published online: 04 Jan 2024

References

  • Alin SR, Johnson TC. 2007. Carbon cycling in large lakes of the world: a synthesis of production, burial, and lake–atmosphere exchange estimates. Glob Biogeochem Cycles. 21(3):GB3002.
  • Al-Kaisi MM, Kwaw-Mensah D. 2020. Quantifying soil carbon change in a long-term tillage and crop rotation study across Iowa landscapes. Soil Sci Soc Am J. 84:182–202.
  • Almeida RM, Nobrega GN, Junger PC, Figueiredo AV, Andrade AS, De Moura CGB, Tonetta D, Oliveira ES Jr, Araujo F, Rust F. 2016. High primary production contrasts with intense carbon emission in a eutrophic tropical reservoir. Front Microbiol. 7:717.
  • Anderson NJ, Bennion H, Lotter AF. 2014. Lake eutrophication and its implications for organic carbon sequestration in Europe. Glob Chang Biol. 20:2741–2751.
  • Anderson NJ, Heathcote AJ, Engstrom DR, Globocarb-data-contributors. 2020. Anthropogenic alteration of nutrient supply increases the global freshwater carbon sink. Science Advances. 6:eaaw2145.
  • Barnickol PG, Campbell RS. 1952. Summary of selected pond studies in Missouri. J Wildl Manage. 16:270–274.
  • Baxter RM. 1977. Environmental effects of dams and impoundments. Ann Rev Ecol Syst. 8:255–283.
  • Beaulieu JJ, DelSontro T, Downing JA. 2019. Eutrophication will increase methane emissions from lakes and impoundments during the 21st century. Nat Commun. 10:1375.
  • Berg MD, Popescu SC, Wilcox BP, Angerer JP, Rhodes EC, McAlister J, Fox WE. 2016. Small farm ponds: overlooked features with important impacts on watershed sediment transport. J Am Water Resour Assoc. 52:67–76.
  • Bouwman L, Goldewijk KK, Van Der Hoek KW, Beusen AHW, Van Vuuren DP, Willems J, Rufino MC, Stehfest E. 2013. Exploring global changes in nitrogen and phosphorus cycles in agriculture induced by livestock production over the 1900–2050 period. Proc Natl Acad Sci USA. 110:20882–20887.
  • Brenner M, Keenan LW, Miller SJ, Schelske CL. 1998. Spatial and temporal patterns of sediment and nutrient accumulation in shallow lakes of the Upper St. Johns River Basin, Florida. Wetl Ecol Manag. 6:221–240.
  • Brothers SM, Hilt S, Attermeyer K, Grossart HP, Kosten S, Lischke B, Mehner T, Meyer N, Scharnweber K, Köhler J. 2013. A regime shift from macrophyte to phytoplankton dominance enhances carbon burial in a shallow, eutrophic lake. Ecosphere. 4:art137.
  • Canfield DE, Jones JR, Bachmann RW. 1982. Sedimentary losses of phosphorus in some natural and artificial Iowa lakes. Hydrobiologia. 87:65–76.
  • Céréghino R, Boix D, Cauchie H-M, Martens K, Oertli B. 2014. The ecological role of ponds in a changing world. Hydrobiologia. 723:1–6.
  • Chatterjee A. 2020. Extent and variation of nitrogen losses from non-legume field crops of conterminous United States. Nitrogen. 1:34–51.
  • Chowaniak M, Głąb T, Klima K, Niemiec M, Zaleski T, Zuzek D. 2020. Effect of tillage and crop management on runoff, soil erosion and organic carbon loss. Soil Use Manag. 36:581–593.
  • Cole JJ, Prairie YT, Caraco NF, McDowell WH, Tranvik LJ, Striegl RG, Duarte CM, Kortelainen P, Downing JA, Middelburg JJ, Melack J. 2007. Plumbing the global carbon cycle: integrating inland waters into the terrestrial carbon budget. Ecosystems. 10:172–185.
  • Compton LV. 1952. Farm and ranch ponds. J Wildl Manage. 16:238–242.
  • Cordeiro RC, Turcq PFM, Turcq BJ, Moreira LS, de Caravalho Rodrigues R, da Costa RL, Sifeddine A, Simoes Filho FFL. 2008. Acumulação de carbono em lagos amazônicos como indicador de eventos paleoclimáticos e antrópicos [Carbon accumulation in Amazonian lakes as an indicator of paleoclimatic and anthropogenic events.] Oecolog Brasil. 12:13.
  • Cross WF, Benstead JP, Frost PC, Thomas SA. 2005. Ecological stoichiometry in freshwater benthic systems: recent progress and perspectives. Freshw Biol. 50:1895–1912.
  • Dean WJ. 1974. Determination of carbonate and organic matter in calcareous sediments and sedimentary rocks by loss on ignition: comparison with other methods. J Sed Petrol. 44:242–248.
  • Dean WJ, Gorham ET. 1976. Major chemical and mineral components of profundal surface sediments in Minnesota lakes. Limnol Oceanogr. 21:259–284.
  • DelSontro T, Beaulieu JJ, Downing JA. 2018. Greenhouse gas emissions from lakes and impoundments: upscaling in the face of global change. Limnol Oceanogr Lett. 3:64–75.
  • deNoyelles F, Kastens J. 2016. Reservoir sedimentation challenges Kansas. Trans Kans Acad Sci. 119:69–81.
  • Dietz RD, Engstrom DR, Anderson NJ. 2015. Patterns and drivers of change in organic carbon burial across a diverse landscape: insights from 116 Minnesota lakes. Glob Biogeochem Cycles. 29:708–727.
  • Downing JA. 2009. Global limnology: up-scaling aquatic services and processes to planet Earth. Verh Int Ver Theor Angew Limnol. 30:1149–1166.
  • Downing JA. 2010. Emerging global role of small lakes and ponds: little things mean a lot. Limnetica. 29:9–24.
  • Downing JA. 2014. Productivity of freshwater ecosystems and climate change. In: Freedman E, editor. Global environmental change. Dordrecht: Springer Netherlands; p. 221–229.
  • Downing JA, Cole JJ, Middelburg JJ, Striegl RG, Duarte CM, Kortelainen P, Prairie YT, Laube KA. 2008. Sediment organic carbon burial in agriculturally eutrophic impoundments over the last century. Glob Biogeochem Cycles. 22:1.
  • Downing JA, Prairie YT, Cole JJ, Duarte CM, Tranvik LJ, Striegl RG, McDowell WH, Kortelainen P, Caraco NF, Melack JM, et al. 2006. The global abundance and size distribution of lakes, ponds, and impoundments. Limnol Oceanogr. 51:2388–2397.
  • Ferland M-E, Prairie YT, Teodoru C, del Giorgio PA. 2014. Linking organic carbon sedimentation, burial efficiency, and long-term accumulation in boreal lakes. J Geophys Res Biogeosci. 119:836–847.
  • Fraterrigo JM, Downing JA. 2008. The influence of land use on lake nutrients varies with watershed transport capacity. Ecosystems. 11:1021–1034.
  • Gälman V, Rydberg J, de-Luna SS, Bindler R, Renberg I. 2008. Carbon and nitrogen loss rates during aging of lake sediment: changes over 27 years studied in varved lake sediment. Limnol Oceanogr. 53:1076–1082.
  • Gardner WS, Nalepa TF, Malczyk JM. 1987. Nitrogen mineralization and denitrification in Lake Michigan sediments. Limnol Oceanogr. 32:1226–1238.
  • Georgiou K, Jackson RB, Vindušková O, Abramoff RZ, Ahlström A, Feng W, Harden JW, Pellegrini AFA, Polley HW, Soong JL, et al. 2022. Global stocks and capacity of mineral-associated soil organic carbon. Nat Commun. 13:3797.
  • Gilbert PJ, Taylor S, Cooke DA, Deary ME, Jeffries MJ. 2021. Quantifying organic carbon storage in temperate pond sediments. J Environ Manage. 280:111698.
  • Gudasz C, Bastviken D, Steger K, Premke K, Sobek S, Tranvik LJ. 2010. Temperature-controlled organic carbon mineralization in lake sediments. Nature. 466:478–481.
  • Gui Z-f, Xue B, Yao S-c, Wei W-j, Yi S. 2013. Organic carbon burial in lake sediments in the middle and lower reaches of the Yangtze River Basin, China. Hydrobiologia. 710:143–156.
  • Guo Y, Amundson R, Gong P, Yu Q. 2006. Quantity and spatial variability of soil carbon in the conterminous United States. Soil Sci Soc Am J. 70:590–600.
  • Hamilton D, Mitchell S. 1988. Effects of wind on nitrogen, phosphorus, and chlorophyll in a shallow New Zealand lake. Verh Int Ver Theor Angew Limnol. 23:624–628.
  • Harrison JA, Maranger RJ, Alexander RB, Giblin AE, Jacinthe P-A, Mayorga E, Seitzinger SP, Sobota DJ, Wollheim WM. 2009. The regional and global significance of nitrogen removal in lakes and reservoirs. Biogeochemistry. 93:143–157.
  • Heathcote AJ, Downing JA. 2012. Impacts of eutrophication on carbon burial in freshwater lakes in an intensively agricultural landscape. Ecosystems. 15:60–70.
  • Heathcote AJ, Filstrup CT, Downing JA. 2013. Watershed sediment losses to lakes accelerating despite agricultural soil conservation efforts. PLoS One. 8:e53554.
  • Heiri O, Lotter AF, Lemcke G. 2001. Loss on ignition as a method for estimating organic and carbonate content in sediments: reproducibility and comparability of results. J Paleolimnol. 25:101–110.
  • Hobbs WO, Engstrom DR, Scottler SP, Zimmer KD, Cotner JB. 2013. Estimating modern carbon burial rates in lakes using a single sediment sample. Limnol Oceanogr Meth. 11:316–326.
  • Jeppesen E, Kronvang B, Meerhoff M, Søndergaard M, Hansen KM, Andersen HE, Lauridsen TL, Liboriussen L, Beklioglu M, Özen A, et al. 2009. Climate change effects on runoff, catchment phosphorus loading and lake ecological state, and potential adaptations. J Environ Qual. 38:1930–1941.
  • Jones JR, Bachmann RW. 1976. Prediction of phosphorus and chlorophyll levels in lakes. J Water Poll Control Fed. 48:2176–2182.
  • Jones JR, Knowlton MF. 2005. Suspended solids in Missouri reservoirs in relation to catchment features and internal processes. Water Res. 39:3629–3635.
  • Jones JR, Knowlton MF, Obrecht DV, Thorpe AP, Harlan JD. 2009. Role of contemporary and historic vegetation on nutrients in Missouri reservoirs: implications for developing nutrient criteria. Lake Reserv Manag. 25:111–118.
  • Jones JR, Thorpe AP, Obrecht DV. 2020. Limnological characteristics of Missouri reservoirs: synthesis of a long-term assessment. Lake Reserv Manag. 36:412–422.
  • Knoll LB, Vanni MJ, Renwick WH, Kollie S. 2014. Burial rates and stoichiometry of sedimentary carbon, nitrogen and phosphorus in Midwestern US reservoirs. Freshw Biol. 59:2342–2353.
  • Knowlton MF, Jones JR. 2000. Non-algal seston, light, nutrients and chlorophyll in Missouri reservoirs. Lake Reserv Manag. 16:322–332.
  • Kunz MJ, Anselmetti FS, Wüest A, Wehrli B, Vollenweider A, Thüring S, Senn DB. 2011. Sediment accumulation and carbon, nitrogen, and phosphorus deposition in the large tropical reservoir Lake Kariba (Zambia/Zimbabwe). J Geophys Res Biogeosci. 116:G03003.
  • Landers DH, Simonich SL, Jaffe DA, Geiser LH, Campbell DH, Schwindt AR, Schreck CB, Kent ML, Hafner WD, Taylor HE. 2008. The fate, transport, and ecological impacts of airborne contaminants in western national parks (USA). Corvallis (OR): Western Airborne Contaminants Assessment Project Final Report.
  • Maavara T, Parsons CT, Ridenour C, Stojanovic S, Dürr HH, Powley HR, Van Cappellen P. 2015. Global phosphorus retention by river damming. Proc Natl Acad Sci USA. 112(51):15603–15608.
  • Mackay EB, Jones ID, Folkard AM, Barker P. 2012. Contribution of sediment focussing to heterogeneity of organic carbon and phosphorus burial in small lakes. Freshw Biol. 57:290–304.
  • Manthorne DJ. 2002. An inventory of atmospheric mercury enrichment to alpine lakes in Colorado [master’s thesis]. Boulder (CO): University of Colorado.
  • Maranger R, Jones SE, Cotner JB. 2018. Stoichiometry of carbon, nitrogen, and phosphorus through the freshwater pipe. Limnol Oceanogr Lett. 3:89–101.
  • Martin TD, Brockhoff CA, Creed JT. 1994. EMMC methods work group-Method 200.7. Determination of metals and trace elements in water and wastes by inductively coupled plasma-atomic emission spectrometry, Revision.4.
  • Mast MA, Manthorne DJ, Roth DA. 2010. Historical deposition of mercury and selected trace elements to high-elevation national parks in the Western US inferred from lake-sediment cores. Atmos Environ. 44:2577–2586.
  • Mendonça R, Müller RA, Clow D, Verpoorter C, Raymond P, Tranvik LJ, Sobek S. 2017. Organic carbon burial in global lakes and reservoirs. Nat Commun. 8:1694.
  • Minnesota Pollution Control Agency. 2023. Minnesota Stormwater Manual. https://stormwater.pca.state.mn.us/index.php/Available_stormwater_models_and_selecting_a_model.
  • Missouri Department of Natural Resources. 1987. Missouri water atlas. Jefferson City (MO): Missouri Department of Natural Resources.
  • Mulholland PJ, Elwood JW. 1982. The role of lake and reservoir sediments as sinks in the perturbed global carbon cycle. Tellus. 34:490–499.
  • Nelson DW, Sommers LE. 1996. Total carbon, organic carbon, and organic matter. In: Sparks DL, Page AL, Helmke P, Loeppert RH, Soltanpour PN, Tabatabai MA, Johnston CT, Sumner ME, editors. Methods of soil analysis. Madison (WI): Soil Science Society of America; p. 961–1010.
  • Obrador B, Pretus JL. 2012. Budgets of organic and inorganic carbon in a Mediterranean coastal lagoon dominated by submerged vegetation. Hydrobiologia. 699:35–54.
  • Pittman B, Jones JR, Millspaugh JJ, Kremer RJ, Downing JA. 2013. Sediment organic carbon distribution in 4 small northern Missouri impoundments: implications for sampling and carbon sequestration. Inland Waters. 3:39–46.
  • Pittman BA. 2011. Spatial analysis of organic carbon and nitrogen sedimentation in four northern Missouri reservoirs: implications for optimal sampling [master’s thesis]. Columbia (MO): University of Missouri.
  • Powers SM, Tank JL, Robertson DM. 2015. Control of nitrogen and phosphorus transport by reservoirs in agricultural landscapes. Biogeochemistry. 124:417–439.
  • Qiu M, Wei X, Hou Y, Spencer SA, Hui J. 2023. Forest cover, landscape patterns, and water quality: a meta-analysis. Landsc Ecol. 38:877–901.
  • Rippey B, Anderson NJ, Renberg I, Korsman T. 2008. The accuracy of methods used to estimate the whole-lake accumulation rate of organic carbon, major cations, phosphorus and heavy metals in sediment. J Paleolimnol. 39:83–99.
  • Ritchie JC. 1989. Carbon content of sediments of small reservoirs. J Am Water Res Assoc. 25:301–308.
  • Rogers MN, Williamson TJ, Knoll LB, Vanni MJ. 2022. Temporal patterns in sediment, carbon, and nutrient burial in ponds associated with changing agricultural tillage. Biogeochemistry. 159:87–102.
  • Sinha E, Michalak AM, Balaji V. 2017. Eutrophication will increase during the 21st century as a result of precipitation changes. Science. 357:405–408.
  • Smith SV, Renwick WH, Bartley JD, Buddemeier RW. 2002. Distribution and significance of small, artificial water bodies across the United States landscape. Sci Total Environ. 299:21–36.
  • Sterner RW, Elser JJ. 2017. Ecological stoichiometry: ecological stoichiometry. Princeton (NJ): Princeton University Press.
  • Taylor S, Gilbert PJ, Cooke DA, Deary ME, Jeffries MJ. 2019. High carbon burial rates by small ponds in the landscape. Front Ecol Environ. 17:25–31.
  • Teodoru CR, Bastien J, Bonneville MC, del Giorgio PA, Demarty M, Garneau M, Hélie JF, Pelletier L, Prairie YT, Roulet NT. 2012. The net carbon footprint of a newly created boreal hydroelectric reservoir. Glob Biogeochem Cycles. 26(2).
  • Thaler EA, Larsen IJ, Yu Q. 2021. The extent of soil loss across the US corn belt. Proc Natl Acad Sci USA. 118:e1922375118.
  • Tranvik LJ, Downing JA, Cotner JB, Loiselle SA, Striegl RG, Ballatore TJ, Dillon P, Finlay K, Fortino K, Knoll LB, et al. 2009. Lakes and reservoirs as regulators of carbon cycling and climate. Limnol Oceanogr. 54:2298–2314.
  • Van Metre PC. 2012. Increased atmospheric deposition of mercury in reference lakes near major urban areas. Environ Poll. 162:209–215.
  • Verstraeten G, Poesen J. 2000. Estimating trap efficiency of small reservoirs and ponds: methods and implications for the assessment of sediment yield. Progr Phys Geogr Earth Environ. 24:219–251.
  • Wang M, Houlton BZ, Wang S, Ren C, van Grinsven HJM, Chen D, Xu J, Gu B. 2021. Human-caused increases in reactive nitrogen burial in sediment of global lakes. Innovation. 2:100158.
  • Wilkinson GM, Besterman A, Buelo C, Gephart J, Pace ML. 2018. A synthesis of modern organic carbon accumulation rates in coastal and aquatic inland ecosystems. Sci Rep. 8:15736.
  • Yao F, Livneh B, Rajagopalan B, Wang J, Crétaux J-F, Wada Y, Berge-Nguyen M. 2023. Satellites reveal widespread decline in global lake water storage. Science. 380:743–749.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.