2,533
Views
6
CrossRef citations to date
0
Altmetric
Review

Original designs of chalcogenide microstuctured optical fibers

, , &
Pages 7-13 | Received 21 Dec 2016, Accepted 22 Mar 2017, Published online: 03 Apr 2017

References

  • Shiryaev V, Churbanov M. Preparation of high purity chalcogenide glasses. In: Zhang XH, Adam JL, editors. Chalcogenide glasses, preparation, properties and applications. Oxford: Woodhead Publishing; 2014. p. 3–35.
  • Temelkuran B, Hart SD, Benoit G, et al. Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission. Nature. 2002;420:650–653.10.1038/nature01275
  • Butvina LN, Sereda OV, Dianov EM, et al. Single-mode microstructured optical fiber for the middle infrared. Opt Lett. 2007;32:334–336.10.1364/OL.32.000334
  • Shalem S, Tsun A, Rave E, et al. Silver halide single-mode fibers for the middle infrared. Appl Phys Lett. 2005;87. doi:http://dx.doi.org/10.1063/1.2034102.
  • Birks TA, Knight JC, Russell PS. Endlessly single-mode photonic crystal fiber. Opt Lett. 1997;22:961–963.10.1364/OL.22.000961
  • Birks TA, Roberts PJ, Russell PSJ, et al. Full 2-D photonic bandgaps in silica/air structures. Electron Lett. 1995;31:1941–1943.10.1049/el:19951306
  • Monro TM, West YD, Hewak DW, et al. Chalcogenide holey fibres. Electron Lett. 2000;36:1998–2000.10.1049/el:20001394
  • Le Person J, Smektala F, Chartier T, et al. Light guidance in new chalcogenide holey fibres from GeGaSbS glass. Mater Res Bull. 2006;41:1303–1309.10.1016/j.materresbull.2006.01.007
  • Sanghera JS, Aggarwal ID, Shaw LB, et al. Nonlinear properties of chalcogenide glass fibers. J Optoelectron Adv Mater. 2006;8:2148–2155.
  • Brilland L, Smektala F, Renversez G, et al. Fabrication of complex structures of Holey fibers in chalcogenide glass. Opt Express. 2006;14:1280–1285.10.1364/OE.14.001280
  • Brilland L, Troles J, Houizot P, et al. Interfaces impact on the transmission of chalcogenide photonic crystal fibres. J Ceram Soc Jpn. 2008;116: Epub 1027.
  • Coulombier Q, Brilland L, Houizot P, et al. Casting method for producing low-loss chalcogenide microstructured optical fibers. Opt Express. 2010;18:9107–9112.10.1364/OE.18.009107
  • Désévédavy F, Renversez G, Troles J, et al. Chalcogenide glass hollow core photonic crystal fibers. Opt Mater. 2010;32:1532–1539.10.1016/j.optmat.2010.06.016
  • Kosolapov AF, Pryamikov AD, Biriukov AS, et al. Demonstration of CO2-laser power delivery through chalcogenide-glass fiber with negative-curvature hollow core. Opt Express. 2011;19:25723–25728.10.1364/OE.19.025723
  • Gattass RR, Rhonehouse D, Gibson D, et al. Infrared glass-based negative-curvature anti-resonant fibers fabricated through extrusion. Opt Express. 2016;24:25697–25703.10.1364/OE.24.025697
  • Renversez G, Bordas F, Kuhlmey BT. Second mode transition in microstructured optical fibers: determination of the critical geometrical parameter and study of the matrix refractive index and effects of cladding size. Opt Lett. 2005;30:1264–1266.10.1364/OL.30.001264
  • Ortigosa-Blanch A, Knight JC, Wadsworth WJ, et al. Highly birefringent photonic crystal fibers. Opt Lett. 2000;25:1325–1327.10.1364/OL.25.001325
  • Yue Y, Kai G, Wang Z, et al. Highly birefringent elliptical-hole photonic crystal fiber with squeezed hexagonal lattice. Opt Lett. 2007;32:469–471.10.1364/OL.32.000469
  • Schreiber T, Röser F, Schmidt O, et al. Stress-induced single-polarization single-transverse mode photonic crystal fiber with low nonlinearity. Opt Express. 2005;13:7621–7630.10.1364/OPEX.13.007621
  • Suzuki K, Kubota H, Kawanishi S, et al. Optical properties of a low-loss polarization-maintaining photonic crystal fiber. Opt Express. 2001;9:676–680.10.1364/OE.9.000676
  • Noda J, Okamoto K, Sasaki Y. Polarization-maintaining fibers and their applications. J Lightwave Technol. 1986;4:1071–1089.10.1109/JLT.1986.1074847
  • Caillaud C, Gilles C, Provino L, et al. Highly birefringent chalcogenide optical fiber for polarization-maintaining in the 3–8.5 μm mid-IR window. Opt Express. 2016;24:7977–7986.10.1364/OE.24.007977
  • Lee JH, Belardi W, Furusawa K, et al. Four-wave mixing based 10-Gb/s tunable wavelength conversion using a holey fiber with a high SBS threshold. Photon Technol Lett, IEEE. 2003;15:440–442.
  • Le SD, Nguyen DM, Thual M, et al. Efficient four-wave mixing in an ultra-highly nonlinear suspended-core chalcogenide As38Se62 fiber. Opt Express. 2011;19:B653–B60.10.1364/OE.19.00B653
  • Troles J, Coulombier Q, Canat G, et al. Low loss microstructured chalcogenide fibers for large non linear effects at 1995 nm. Opt Express. 2010;18:26647–26654.10.1364/OE.18.026647
  • Toupin P, Brilland L, Trolès J, et al. Small core Ge-As-Se microstructured optical fiber with single-mode propagation and low optical losses. Opt Mater Express. 2012;2:1359–1366.10.1364/OME.2.001359
  • Le SD, Gay M, Bramerie L, et al. All-optical time-domain demultiplexing of 170.8 Gbit/s signal in chalcogenide GeAsSe microstructured fibre. Electron Lett. 2013;49:136–138.10.1049/el.2012.4104
  • Fatome J, Fortier C, Nguyen TN, et al. Linear and nonlinear characterizations of chalcogenide photonic crystal fibers. J Lightwave Technol. 2009;27:1707–1715.10.1109/JLT.2009.2021672
  • Nguyen DM, Le SD, Lengle K, et al. Demonstration of nonlinear effects in an ultra-highly nonlinear AsSe suspended-core chalcogenide fiber. IEEE Photon Technol Lett. 2010;22:1844–1846.10.1109/LPT.2010.2088386
  • El-Amraoui M, Gadret G, Jules JC, et al. Microstructured chalcogenide optical fibers from As2S3 glass: towards new IR broadband sources. Opt Express. 2010;18:26655–26665.10.1364/OE.18.026655
  • Mamyshev PV. All-optical data regeneration based on self-phase modulation effect. Optical Communication, 1998 24th European Conference. 1998;1.
  • Brès CS, Zlatanovic S, Wiberg AOJ, et al. Continuous-wave four-wave mixing in cm-long chalcogenide microstructured fiber. Opt Express. 2011;19:B621–B7.10.1364/OE.19.00B621
  • Le SD, Nguyen DM, Thual M, et al. 42.7 Gbit/s RZ-33% wavelength conversion in a chalcogenide microstructured fiber OFC. Proc. Optical Fiber Communication Conference; 2012; Los Angeles (CA), paper Oth4h.4.
  • Pelusi MD, Luan F, Madden S, et al. Wavelength conversion of high-speed phase and intensity modulated signals using a highly nonlinear chalcogenide glass chip. Photon Technol Lett, IEEE. 2010;22:3–5.10.1109/LPT.2009.2035094
  • Abedin KS. Observation of strong stimulated Brillouin scattering in single-mode As2Se3 chalcogenide fiber. Opt Express. 2005;13:10266–10271.10.1364/OPEX.13.010266
  • Tow KH, Léguillon Y, Fresnel S, et al. Linewidth-narrowing and intensity noise reduction of the 2(nd) order Stokes component of a low threshold Brillouin laser made of Ge10As22Se68 chalcogenide fiber. Opt Express. 2012;20:B104–B9.10.1364/OE.20.00B104
  • Dabas B, Sinha RK. Dispersion characteristic of hexagonal and square lattice chalcogenide As2Se3 glass photonic crystal fiber. Opt Commun. 2010;283:1331–1337.10.1016/j.optcom.2009.11.091
  • Hu J, Menyuk CR, Shaw LB, et al. Computational study of 3–5 mu m source created by using supercontinuum generation in As2S3 chalcogenide fibers with a pump at 2 mu m. Opt Lett. 2010;35:2907–2909.10.1364/OL.35.002907
  • Hu J, Menyuk CR, Shaw LB, et al. Maximizing the bandwidth of supercontinuum generation in As2Se3 chalcogenide fibers. Opt Express. 2010;18:6722–6739.10.1364/OE.18.006722
  • Mouawad O, Picot-Clémente J, Amrani F, et al. Multioctave midinfrared supercontinuum generation in suspended-core chalcogenide fibers. Opt Lett. 2014;39:2684–2687.10.1364/OL.39.002684
  • Duhant M, Renard W, Canat G, et al. Fourth-order cascaded Raman shift in AsSe chalcogenide suspended-core fiber pumped at 2 μm. Opt Lett. 2011;36:2859–2861.10.1364/OL.36.002859
  • Kulkarni OP, Xia C, Lee DJ, et al. Third order cascaded Raman wavelength shifting in chalcogenide fibers and determination of Raman gain coefficient. Opt Express. 2006;14:7924–7930.10.1364/OE.14.007924
  • Thielen PA, Shaw LB, Pureza PC, et al. Small-core As-Se fiber for Raman amplification. Opt Lett. 2003;28:1406–1408.10.1364/OL.28.001406
  • White RT, Monro TM. Cascaded Raman shifting of high-peak-power nanosecond pulses in As2S3 and As2Se3 optical fibers. Opt Lett. 2011;36:2351–2353.10.1364/OL.36.002351
  • Cheng T, Kanou Y, Deng D, et al. Fabrication and characterization of a hybrid four-hole AsSe2-As2S5 microstructured optical fiber with a large refractive index difference. Opt Express. 2014;22:13322–13329.10.1364/OE.22.013322
  • Duhant M, Renard W, Canat G, et al. Mid-infrared strong spectral broadening in microstructured tapered chalcogenide AsSe fiber. Proc. SPIE 8237 Fiber Lasers IX: Technology, Systems, and Applications; 2012; San Francisco (CA). p. 823735–823740.
  • Petersen CR, Møller U, Kubat I, et al. Mid-infrared supercontinuum covering the 1.4–13.3 μm molecular fingerprint region using ultra-high NA chalcogenide step-index fibre. Nat Photon. 2014;8:830–834.10.1038/nphoton.2014.213
  • Deng DH, Liu L, Tuan TH, et al. Mid-infrared supercontinuum covering 3-10 μm using a As2Se3 core and As2S5 cladding step-index chalcogenide fiber. J Ceram Soc Jpn. 2016;124:103–105.10.2109/jcersj2.15203
  • Møller U, Yu Y, Kubat I, et al. Multi-milliwatt mid-infrared supercontinuum generation in a suspended core chalcogenide fiber. Opt Express 2015;23:3282–3291.10.1364/OE.23.003282
  • Michel K, Bureau B, Pouvreau C, et al. Development of a chalcogenide glass fiber device for in situ pollutant detection. J Non-Cryst Solids. 2003;326–327:434–438.10.1016/S0022-3093(03)00438-1
  • Michel K, Bureau B, Boussard-Plédel C, et al. Monitoring of pollutant in waste water by infrared spectroscopy using chalcogenide glass optical fibers. Sens Actuators B: Chem. 2004;101:252–259.10.1016/j.snb.2004.03.014
  • Keirsse J, Boussard-Pledel C, Loreal O, et al. Chalcogenide glass fibers used as biosensors. J Non-Cryst Solids. 2003;326–327:430–433.10.1016/S0022-3093(03)00434-4
  • Brandily ML, Monbet V, Bureau B, et al. Identification of foodborne pathogens within food matrices by IR spectroscopy. Sens Actuators B: Chem. 2011;160:202–206.10.1016/j.snb.2011.07.034
  • Charpentier F, Troles J, Coulombier Q, et al. CO2 detection using microstructured chalcogenide fibers. Sensor Lett. 2009;7:745–749.10.1166/sl.2009.1142
  • Warren-Smith SC, Afshar VS, Monro TM. Theoretical study of liquid-immersed exposed-core microstructured optical fibers for sensing. Opt Express. 2008;16:9034–9045.10.1364/OE.16.009034
  • Hoo YL, Jin W, Shi C, et al. Design and modeling of a photonic crystal fiber gas sensor. Appl Opt. 2003;42:3509–3515.10.1364/AO.42.003509
  • Toupin P, Brilland L, Boussard-Plédel C, et al. Comparison between chalcogenide glass single index and microstructured exposed-core fibers for chemical sensing. J Non-Cryst Solids. 2013;377:217–219.10.1016/j.jnoncrysol.2012.12.026