495
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigation of an optimized hot press process design for manufacturing structural polyethersulfone foams

ORCID Icon & ORCID Icon
Article: 2269021 | Received 05 Jun 2023, Accepted 05 Oct 2023, Published online: 19 Oct 2023

References

  • Klempner D and Frisch KC, editors. Handbook of polymeric foams and foam technology. New York: Oxford University Press; 1991.
  • Ma W. Sandwich structural composites: theory and practice. Milton: Taylor & Francis Group; 2022.
  • BASF aerospace materials and technologies, “Ultrason ATP.” Available from: https://aerospace.basf.com/ultrason-atp.html
  • Salmins M, Mitschang P. Bending properties of structural foams manufactured in a hot press process. Adv Manuf Polym Compos Sci. 2022;8(3):117–133. doi: 10.1080/20550340.2022.2077277.
  • Thermoplastische Partikelschaumstoffe—Aktueller Stand und Perspektiven. Düsseldorf: VDI Verlag; 1996.
  • Biernat U. BASF entwickelt weltweit ersten Partikelschaumstoff auf Basis von Polyethersulfon, Ludwigshafen [Internet]. 2018 Sep. Available: https://www.basf.com/global/de/media/news-releases/2018/09/p-18-312.html.
  • Lee ST and Ramesh NS, editors. Polymeric foams: mechanisms and materials. Boca Raton: CRC Press; 2004.
  • Zhang A, Wang J, Wang G, et al. Microcellular injection molded lightweight, strong and thermally insulating PP/fibrillated-PTFE composite foams with enhanced surface appearance. J Mater Res Technol. 2023;22:2933–2943. doi: 10.1016/j.jmrt.2022.12.160.
  • Guo W, Yang Q, Mao H, et al. A combined in-mold decoration and microcellular injection molding method for preparing foamed products with improved surface appearance. Polymers (Basel). 2019;11(5):778. doi: 10.3390/polym11050778.
  • Neitzel M, Mitschang P, Breuer U. Handbuch verbundwerkstoffe: werkstoffe, verarbeitung, anwendung. München: Carl Hanser Fachbuchverlag; 2014.
  • Henning F, Moeller E. Handbuch leichtbau: methoden, werkstoffe, fertigung. München: Hanser; 2011.
  • Gee G. The glassy state in polymers. Contemp Phys. 1970;11(4):313–334. doi: 10.1080/00107517008204410.
  • Brown IG, Wetton RE, Richardson MJ, et al. Glass transition and thermodynamic state of densified polymeric glasses. Polymer. 1978;19(6):659–663. doi: 10.1016/0032-3861(78)90119-2.
  • Affolter S, Ritter A, Schmid M. Interlaboratory tests on polymers by differential scanning calorimetry (DSC): determination of glass transition temperature (Tg). Macromol Mater Eng. 2001;286(10):605–610. doi: 10.1002/1439-2054(20011001)286:10 < 605::AID-MAME605 > 3.0.CO;2-Y.
  • Hobbs SY. Predicting the flexural rigidity of thermoplastic structural foams. J Cell Plast. 1976;12(5):258–263. doi: 10.1177/0021955X7601200501.
  • Wasserstrass JD, Throne JL. Flexure and cantilever bending of structural foam beams. J Cell Plast. 1976;12(2):98–103. doi: 10.1177/0021955X7601200204.
  • Iida M, Gotoh M, Yokono H, et al. Flexural properties of moldings of rigid polyurethane made by reaction injection molding. Polym Eng Sci. 1986;26(10):701–707. doi: 10.1002/pen.760261009.
  • Khakhar DV, Joseph KV. Optimization of the structure of integral skin foams for maximal flexural properties. Polym Eng Sci. 1994;34(9):726–733. doi: 10.1002/pen.760340905.
  • Zhang Y, Rodrigue D, Ait-Kadi A. High density polyethylene foams. 4. Flexural and tensile moduli of structural foams. J Appl Polym Sci. 2003;90(8):2139–2149. doi: 10.1002/app.12824.
  • Barzegari MR, Rodrigue D. The effect of density profile on the flexural properties of structural foams. Polym Eng Sci. 2007;47(9):1459–1468. doi: 10.1002/pen.20844.
  • Throne JL. Stiffness models for thermoplastic structural foams: an observation [cited 1978 Jan]. Available: 10.1177/0021955X7801400102.
  • Wu J-S, Yeh T-M. Studies on the flexural modulus of structural foams. J Polym Res. 1994;1(1):61–68. doi: 10.1007/BF01378595.
  • Moore DR, Iremonger MJ. The prediction of the flexural rigidity of sandwich foam mouldings. J Cell Plast. 1974;10(5):230–236. doi: 10.1177/0021955X7401000505.
  • Moore DR, Couzens KH, Iremonger MJ. The deformational behaviour of foamed thermoplastics. J Cell Plast. 1974;10(3):135–139. doi: 10.1177/0021955X7401000307.
  • Iremonger MJ, Lawler JP. Relationship between modulus and density for high-density closed-cell thermoplastic foams. J Appl Polym Sci. 1980;25(5):809–819. doi: 10.1002/app.1980.070250509.
  • Traeger RK. Physical properties of rigid polyurethane foams. J Cell Plast. 1967;3(9):405–418. doi: 10.1177/0021955X6700300906.
  • Progelhof RC, Throne JL. Young’s modulus of uniform density thermoplastic foam. Polym Eng Sci. 1979;19(7):493–499. doi: 10.1002/pen.760190706.
  • Sadik T, Pillon C, Carrot C, et al. Polypropylene structural foams: measurements of the core, skin, and overall mechanical properties with evaluation of predictive models. J Cell Plast. 2017;53(1):25–44. doi: 10.1177/0021955X16633643.
  • Throne JL. Mechanical strength of Self-Skinning foams. J Cell Plast. 1972;8(4):208–210. doi: 10.1177/0021955X7200800407.
  • Throne JL, Griskey RG. Structural thermoplastic foam? A low energy processed material. Polym Eng Sci. 1975;15(10):747–756. doi: 10.1002/pen.760151007.
  • Diab Group. Divinycell F: technical data [cited 2020 June 01]. Available from: https://www.diabgroup.com/products-services/divinycell-pes/divinycell-f/.
  • Material Data Center. Ultrason E 2010 NAT PESU BASF. [cited 2021 Jan 01]. Available from: https://www.materialdatacenter.com/mb/material/pdf/50618/50618/UltrasonE2010NAT.
  • DIN EN ISO 178:2019-08, kunststoffe_-bestimmung der biegeeigenschaften (ISO_178:2019); deutsche fassung EN_ISO_178:2019. Berlin: Beuth Verlag GmbH; 2013.