358
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Structural investigation of solid biopolymer electrolytes: 2-hydroxyethyl cellulose doped ammonium formate as a promising proton conductor

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2335850 | Received 15 Nov 2023, Accepted 21 Mar 2024, Published online: 08 Apr 2024

References

  • Schmidt-Rohr K. How batteries store and release energy: explaining basic electrochemistry. J Chem Educ. 2018;95(10):1801–1810. doi: 10.1021/acs.jchemed.8b00479.
  • Abe H, Kubota M, Nemoto M, et al. High-capacity thick cathode with a porous aluminum current collector for lithium secondary batteries. J Power Sources. 2016;334:78–85. doi: 10.1016/j.jpowsour.2016.10.016.
  • Iqbal MZ, Zakar S, Haider SS. Role of aqueous electrolytes on the performance of electrochemical energy storage device. Electroanal Chem. 2020;858:113793. (doi: 10.1016/j.jelechem.2019.113793.
  • Horowitz Y, Schmidt C, Yoon D, et al. Between liquid and all solid: a prospect on electrolyte future in lithium‐ion batteries for electric vehicles. Energy Tech. 2020;8(11):2000580. doi: 10.1002/ente.202000580.
  • Yao Y, Zhao X, Razzaq AA, et al. Mosaic rGO layers on lithium metal anodes for the effective mediation of lithium plating and stripping. J Mater Chem A. 2019;7(19):12214–12224. doi: 10.1039/C9TA03679B.
  • Zhao R, Wu Y, Liang Z, et al. Metal–organic frameworks for solid-state electrolytes. Energy Environ Sci. 2020;13(8):2386–2403. doi: 10.1039/D0EE00153H.
  • Fuzlin AF, Saadiah MA, Yao Y, et al. Enhancing proton conductivity of sodium alginate doped with glycolic acid in bio-based polymer electrolytes system. J Polym Res. 2020;27(8):207. doi: 10.1007/s10965-020-02142-0.
  • Lizundia E, Kundu D. Advances in natural biopolymer‐based electrolytes and separators for battery applications. Adv Funct Mater. 2020;31(3):2005646. doi: 10.1002/adfm.202005646.
  • Diana MI, Selvin PC, Selvasekarapandian S, et al. Investigations on Na-ion conducting electrolyte based on sodium alginate biopolymer for all-solid-state sodium-ion batteries. J Solid State Electrochem. 2021;25(7):2009–2020. doi: 10.1007/s10008-021-04985-z.
  • Teo LP, Buraidah MH, Arof AK. Development on solid polymer electrolytes for electrochemical devices. Molecules. 2021;26(21):6499. doi: 10.3390/molecules26216499.
  • Rayung M, Aung MM, Azhar SC, et al. Bio-based polymer electrolytes for electrochemical devices: insight into the ionic conductivity performance. Materials (Basel). 2020;13(4):838. doi: 10.3390/ma13040838.
  • Zhang H, Zhang F, Yuan R, Applications of natural polymer-based hydrogels in the food industry. In: Chen Y, editor. Hydrogels based on natural polymers. Elsevier; 2020. p. 357–410. doi: 10.1016/b978-0-12-816421-1.00015-x.
  • Ghazali NM, Samsudin AS. Progress on biopolymer as an application in electrolytes system: a review study. Mater Today: Proc. 2022;49:3668–3678. doi: 10.1016/j.matpr.2021.09.473.
  • Chen C, Xi Y, Weng Y. Recent advances in cellulose-based hydrogels for tissue engineering applications. Polymers (Basel). 2022;14(16):3335. doi: 10.3390/polym14163335.
  • Xie P, Ge Y, Wang Y, et al. Mechanically enhanced nanocrystalline cellulose/reduced graphene oxide/polyethylene glycol electrically conductive composite film. Nanomaterials (Basel). 2022;12(24):4371–4371. doi: 10.3390/nano12244371.
  • Zainuddin NK, Rasali NMJ, Mazuki NF, et al. Investigation on favourable ionic conduction based on CMC-K carrageenan proton conducting hybrid solid bio-polymer electrolytes for applications in EDLC. Int J Hydrogen Energy. 2020;45(15):8727–8741. doi: 10.1016/j.ijhydene.2020.01.038.
  • Ramlli MA, Bashirah NAA, Isa MIN. Ionic conductivity and structural analysis of 2-hyroxyethyl cellulose doped with glycolic acid solid biopolymer electrolytes for solid proton battery. IOP Conf Ser: Mater Sci Eng. 2018;440:012038. doi: 10.1088/1757-899X/440/1/012038.
  • Muthukrishnan M, Shanthi C, Selvasekarapandian S, et al. Impact of ammonium formate (AF) and ethylene carbonate (EC) on the structural, electrical, transport and electrochemical properties of pectin-based biopolymer membranes. Ionics. 2021;27(8):3443–3459. doi: 10.1007/s11581-021-04106-w.
  • Zheng W, Hu X, Wu M, et al. Advanced ammonium salt materials for electrochemical energy storage: recent progress and future perspectives. Chem Eng J. 2023;454:140194–140194. doi: 10.1016/j.cej.2022.140194.
  • Fuzlin AF, Rasali NMJ, Samsudin AS. Effect on ammonium bromide in dielectric behavior based alginate solid biopolymer electrolytes. IOP Conf Ser: Mater Sci Eng. 2018;342:012080. doi: 10.1088/1757-899X/342/1/012080.
  • Abdullah AM, Aziz SB, Brza MA, et al. Glycerol as an efficient plasticizer to increase the DC conductivity and improve the ion transport parameters in biopolymer based electrolytes: XRD, FTIR and EIS studies. Arabian J Chem. 2022;15(6):103791. doi: 10.1016/j.arabjc.2022.103791.
  • Asnawi ASFM, Aziz SB, Brevik I, et al. The study of plasticized sodium ion conducting polymer blend electrolyte membranes based on chitosan/dextran biopolymers: ion transport, structural, morphological and potential stability. Polymers (Basel). 2021;13(3):383. doi: 10.3390/polym13030383.
  • Abirami M, Saratha R, Shilpa R, et al. Preparation and characterization of guar gum-based solid biopolymer electrolyte doped with lithium bis(trifluoromethanesulphonyl)imide (LiTFSI) plasticized with glycerol. Bull Mater Sci. 2020;43(1):254. doi: 10.1007/s12034-020-02218-z.
  • Hafiza MN, Isa MIN. Correlation between structural, ion transport and ionic conductivity of plasticized 2-hydroxyethyl cellulose based solid biopolymer electrolyte. J Membr Sci. 2020;597:117176. doi: 10.1016/j.memsci.2019.117176.
  • Abdullah MM. Consequences of frequency and temperature on the ac-conductivity in ε-GaSe semiconductor single crystal. Results Phys. 2021;25:104220. doi: 10.1016/j.rinp.2021.104220.
  • Yang X, Liu J, Pei N, et al. The critical role of fillers in composite polymer electrolytes for lithium battery. Nano-Micro Lett. 2023;15(1):74. doi: 10.1007/s40820-023-01051-3.
  • Owen L, Jones N. Lattice distortions in high-entropy alloys. J Mater Res. 2018;33(19):2954–2969. doi: 10.1557/jmr.2018.322.
  • El-Sakhawy M, Kamel S, Salama A, et al. Preparation and infrared study of cellulose based amphiphilic materials. Cellulose Chem. Technol. 2018;52(3–4):193–200. http://www.cellulosechemtechnol.ro/pdf/CCT3-4(2018)/p.193-200.pdf
  • Ayouch I, Kassem I, Kassab Z, et al. Crosslinked carboxymethyl cellulose-hydroxyethyl cellulose hydrogel films for adsorption of cadmium and methylene blue from aqueous solutions. Surf Interf. 2021;24(101124):101124–101124. doi: 10.1016/j.surfin.2021.101124.
  • Liu J, Dong C, Wei D, et al. Multifunctional antibacterial and hydrophobic cotton fabrics treated with cyclic polysiloxane quaternary ammonium salt. Fibers Polym. 2019;20(7):1368–1374. doi: 10.1007/s12221-019-1091-2.
  • Ghazali NM, Fuzlin AF, Saadiah MA, et al. Studies on H + ions conducting bio-polymer blend electrolyte based on alginate-PVA doped with NH4NO3. J Non-Cryst Solids. 2022;598:121939. (doi: 10.1016/j.jnoncrysol.2022.121939.
  • Sohaimy MIH, Isa MIN. Proton-conducting biopolymer electrolytes based on carboxymethyl cellulose doped with ammonium formate. Polymers (Basel). 2022;14(15):3019. doi: 10.3390/polym14153019.
  • Kim Y-H, Hwang MS, Kim HJ, et al. Infrared spectroscopy study of low-dielectric-constant fluorine-incorporated and carbon-incorporated silicon oxide films. J Appl Phys. 2001;90(7):3367–3370. doi: 10.1063/1.1402152.
  • Tomar D, Rana B, Jena KC. The structure of water–DMF binary mixtures probed by linear and nonlinear vibrational spectroscopy. J Chem Phys. 2020;152(11):114707. doi: 10.1063/1.5141757.
  • Wang Y, Wu L, Lin Z, et al. Hydrogen bonds enhanced composite polymer electrolyte for high-voltage cathode of solid-state lithium battery. Nano Energy. 2022;96:107105–107105. doi: 10.1016/j.nanoen.2022.107105.
  • Tian Z, Zou Y, Liu G, et al. Electrolyte solvation structure design for sodium ion batteries. Adv Sci (Weinh). 2022;9(22):e2201207. doi: 10.1002/advs.202201207.
  • Devi SS, Chary AS. Cole-Cole analysis and electrical conduction of nano (1-X)Ba(No3)2-Xkno3. RJC. 2021;14(03):1959–1964. doi: 10.31788/RJC.2021.1436397.
  • Ramlli MA, Mohamad Isa MIN, Kamarudin KH, Universiti Malaysia Terengganu. 2-Hydroxyethyl cellulose-ammonium thiocyanate solid biopolymer electrolytes: ionic conductivity and dielectric studies. JSSM. 2022;17(7):121–132. doi: 10.46754/jssm.2022.07.009.
  • Majumdar S, Ray R. Ionic conduction and charge carrier relaxation in chitosan acetate based solid biopolymer electrolyte embedded with LiClO4. J Polym Res. 2021;28(5):157. doi: 10.1007/s10965-021-02509-x.
  • Abd Majid SN, Ishak AQ, Nik Ali NA, et al. The effect of ammonium bromide on methylcellulose biopolymer electrolytes for electrical studies. SSP. 2021;317:426–433. doi: 10.4028/www.scientific.net/SSP.317.426.
  • Rehila Karolin Blesstina S, Mathavan T, Buvaneshwari P, et al. Conducting behaviour of a novel solid biopolymer electrolyte for electrochemical application. Ionics. 2023;29(9):3437–3450. doi: 10.1007/s11581-023-05087-8.
  • Nithya M. Evaluation of conducting properties of biopolymer electrolyte K-Carrageenan with the effect of three different ammonium salts. Enenstrg. 2023;3(2):42–44. doi: 10.52924/YTMK4887.