1,568
Views
0
CrossRef citations to date
0
Altmetric
Original Research Article

The synergies of SMAP enhanced and MODIS products in a random forest regression for estimating 1 km soil moisture over Africa using Google Earth Engine

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 33-57 | Received 25 Apr 2023, Accepted 07 Sep 2023, Published online: 14 Sep 2023

References

  • Abbaszadeh, P., Moradkhani, H., & Zhan, X. (2019). Downscaling SMAP radiometer soil moisture over the CONUS using an ensemble learning method. Water Resources Research, 55(1), 324–344. https://doi.org/10.1029/2018WR023354
  • Adab, H., Morbidelli, R., Saltalippi, C., Moradian, M., & Ghalhari, G. A. F. (2020). Machine learning to estimate surface soil moisture from remote sensing data. Water, 12(11), 1–28. https://doi.org/10.3390/w12113223
  • Amani, M., Ghorbanian, A., Ahmadi, S. A., Kakooei, M., Moghimi, A., Mirmazloumi, S. M., Moghaddam, S. H. A., Mahdavi, S., Ghahremanloo, M., Parsian, S., Wu, Q., & Brisco, B. (2020). Google Earth Engine cloud computing platform for remote sensing big data applications: A comprehensive review. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 13, 5326–5350. https://doi.org/10.1109/JSTARS.2020.3021052
  • Anderson, W. B., Zaitchik, B. F., Hain, C. R., Anderson, M. C., Yilmaz, M. T., Mecikalski, J., & Schultz, L. (2012). Towards an integrated soil moisture drought monitor for East Africa. Hydrology and Earth System Sciences, 16(8), 2893–2913. https://doi.org/10.5194/hess-16-2893-2012
  • Ardö, J. (2013). A 10-year dataset of basic meteorology and soil properties in central Sudan. Dataset Papers in Geosciences, 2013, 1–6. https://doi.org/10.7167/2013/297973
  • Babaeian, E., Sadeghi, M., Jones, S. B., Montzka, C., Vereecken, H., & Tuller, M. (2019). Ground, proximal, and satellite remote sensing of soil moisture. In Reviews of geophysics (Vol. 57, Issue 2, pp. 530–616). Blackwell Publishing Ltd. https://doi.org/10.1029/2018RG000618
  • Bai, J., Cui, Q., Zhang, W., & Meng, L. (2019). An approach for downscaling SMAP soil moisture by combining Sentinel-1 SAR and MODIS data. Remote Sensing, 11(23), 2736. https://doi.org/10.3390/rs11232736
  • Beck, H. E., Pan, M., Miralles, D. G., Reichle, R. H., Dorigo, W. A., Hahn, S., Sheffield, J., Karthikeyan, L., Balsamo, G., Parinussa, R. M., van Dijk, A. I. J. M., Du, J., Kimball, J. S., Vergopolan, N., & Wood, E. F. (2021). Evaluation of 18 satellite- and model-based soil moisture products using in situ measurements from 826 sensors. Hydrology and Earth System Sciences, 25(1), 17–40. https://doi.org/10.5194/hess-25-17-2021
  • Borah, S., Balas, V. E., & Polkowski, Z. (n.d.). Advances in Data Science and Management Lecture Notes on Data Engineering and Communications Technologies 37. http://www.springer.com/series/15362
  • Brocca, L., Zhao, W., & Lu, H. (2023). High-resolution observations from space to address new applications in hydrology. The Innovation, 4(3), 100437. https://doi.org/10.1016/j.xinn.2023.100437
  • Carlson, T. (2007). An overview of the ‘triangle method’ for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors, 7(8), 1612–1629. https://doi.org/10.3390/s7081612
  • Carlson, T. N., & Petropoulos, G. P. (2019). A new method for estimating of evapotranspiration and surface soil moisture from optical and thermal infrared measurements: The simplified triangle. International Journal of Remote Sensing, 40(20), 7716–7729. https://doi.org/10.1080/01431161.2019.1601288
  • Chan, S. K., Bindlish, R., O’Neill, P. E., Njoku, E., Jackson, T., Colliander, A., Chen, F., Burgin, M., Dunbar, S., Piepmeier, J., Yueh, S., Entekhabi, D., Cosh, M. H., Caldwell, T., Walker, J., Wu, X., Berg, A., Rowlandson, T. … Crow, W. T. (2016). Assessment of the SMAP passive soil moisture product. IEEE Transactions on Geoscience and Remote Sensing, 54(8), 4994–5007. https://doi.org/10.1109/TGRS.2016.2561938
  • Chen, F., Crow, W. T., Bindlish, R., Colliander, A., Burgin, M. S., Asanuma, J., & Aida, K. (2018). Global-scale evaluation of SMAP, SMOS and ASCAT soil moisture products using triple collocation. Remote Sensing of Environment, 214, 1–13. https://doi.org/10.1016/J.RSE.2018.05.008
  • Chul Jung, H., Getirana, A., Arsenault, K. R., Kumar, S., & Maigary, I. (2019). Improving surface soil moisture estimates in West Africa through GRACE data assimilation 2 3. Journal of Hydrology, 575, 192–201. https://doi.org/10.1016/j.jhydrol.2019.05.042
  • Colliander, A., Cosh, M. H., Misra, S., Jackson, T. J., Crow, W. T., Chan, S., Bindlish, R., Chae, C., Holifield Collins, C., & Yueh, S. H. (2017). Validation and scaling of soil moisture in a semi-arid environment: SMAP validation experiment 2015 (SMAPVEX15). Remote Sensing of Environment, 196, 101–112. https://doi.org/10.1016/j.rse.2017.04.022
  • Colliander, A., Jackson, T. J., Bindlish, R., Chan, S., Das, N., Kim, S. B., Cosh, M. H., Dunbar, R. S., Dang, L., Pashaian, L., Asanuma, J., Aida, K., Berg, A., Rowlandson, T., Bosch, D., Caldwell, T., Caylor, K., Goodrich, D. … Njoku, E. G. (2017). Validation of SMAP surface soil moisture products with core validation sites. Remote Sensing of Environment, 191, 215–231. https://doi.org/10.1016/j.rse.2017.01.021
  • Colliander, A., Reichle, R. H., Crow, W. T., Cosh, M. H., Chen, F., Chan, S., Das, N. N., Bindlish, R., Chaubell, J., Kim, S., Liu, Q., O’Neill, P. E., Dunbar, R. S., Dang, L. B., Kimball, J. S., Jackson, T. J., Al-Jassar, H. K., Asanuma, J. … Entekhabi, D. (2021). Validation of soil moisture data products from the NASA SMAP mission. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 15, 364–392. https://doi.org/10.1109/JSTARS.2021.3124743
  • Das, N. N., Entekhabi, D., Dunbar, R. S., Njoku, E. G., & Yueh, S. H. (2016). Uncertainty estimates in the SMAP combined active-passive downscaled brightness temperature. IEEE Transactions on Geoscience and Remote Sensing, 54(2), 640–650. https://doi.org/10.1109/TGRS.2015.2450694
  • Das, N. N., Entekhabi, D., & Njoku, E. G. (2011). An algorithm for merging SMAP radiometer and radar data for high-resolution soil-moisture retrieval. IEEE Transactions on Geoscience and Remote Sensing, 49(5), 1504–1512. https://doi.org/10.1109/TGRS.2010.2089526
  • de Jeu, R. A. M., Holmes, T. R. H., Parinussa, R. M., & Owe, M. (2014). A spatially coherent global soil moisture product with improved temporal resolution. Journal of Hydrology, 516, 284–296. https://doi.org/10.1016/j.jhydrol.2014.02.015
  • Djamai, N., Magagi, R., Goïta, K., Merlin, O., Kerr, Y., & Roy, A. (2016). A combination of DISPATCH downscaling algorithm with CLASS land surface scheme for soil moisture estimation at fine scale during cloudy days. Remote Sensing of Environment, 184, 1–14. https://doi.org/10.1016/j.rse.2016.06.010
  • Dorigo, W., Himmelbauer, I., Aberer, D., Schremmer, L., Petrakovic, I., Zappa, L., Preimesberger, W., Xaver, A., Annor, F., Ardö, J., Baldocchi, D., Bitelli, M., Blöschl, G., Bogena, H., Brocca, L., Calvet, J. C., Camarero, J. J., Capello, G., Choi, M., Sabia, R. (2021). The international soil moisture network: Serving earth system science for over a decade. Hydrology and Earth System Sciences, 25(11), 5749–5804. https://doi.org/10.5194/hess-25-5749-2021
  • Entekhabi, D., Yueh, S., O’Neill, P. E., Kellogg, K. H., Allen, A., Bindlish, R., & West, R. (2014). SMAP handbook–soil moisture active passive: Mapping soil moisture and freeze/thaw from space. Jet Propulsion Laboratory, California Institute of Technology. https://smap.jpl.nasa.gov/
  • Escorihuela, M. J., Chanzy, A., Wigneron, J. P., & Kerr, Y. H. (2010). Effective soil moisture sampling depth of L-band radiometry: A case study. Remote Sensing of Environment, 114(5), 995–1001. https://doi.org/10.1016/j.rse.2009.12.011
  • Fang, B., Lakshmi, V., Bindlish, R., & Jackson, T. J. (2018). Downscaling of SMAP soil moisture using land surface temperature and vegetation data. Vadose Zone Journal, 17(1), 1–15. https://doi.org/10.2136/vzj2017.11.0198
  • Fang, B., Lakshmi, V., Bindlish, R., Jackson, T. J., Cosh, M., & Basara, J. (2013). Passive microwave soil moisture downscaling using vegetation Index and skin surface temperature. Vadose Zone Journal, 12(3), vzj2013.05.0089. https://doi.org/10.2136/vzj2013.05.0089er
  • Fang, B., Lakshmi, V., Cosh, M., Liu, P., Bindlish, R., & Jackson, T. J. (2022). A global 1‐km downscaled SMAP soil moisture product based on thermal inertia theory. Vadose Zone Journal, 21(2), e20182. https://doi.org/10.1002/vzj2.20182
  • Fontanet, M., Fernàndez-Garcia, D., & Ferrer, F. (2018). The value of satellite remote sensing soil moisture data and the DISPATCH algorithm in irrigation fields. Hydrology and Earth System Sciences, 22(11), 5889–5900. https://doi.org/10.5194/hess-22-5889-2018
  • Gevaert, A. I., Parinussa, R. M., Renzullo, L. J., van Dijk, A. I. J. M., & de Jeu, R. A. M. (2016). Spatio-temporal evaluation of resolution enhancement for passive microwave soil moisture and vegetation optical depth. International Journal of Applied Earth Observation and Geoinformation, 45, 235–244. https://doi.org/10.1016/j.jag.2015.08.006
  • Ghafari, E., Walker, J. P., Das, N. N., Davary, K., Faridhosseini, A., Wu, X., & Zhu, L. (2020). On the impact of C-band in place of L-band radar for SMAP downscaling. Remote Sensing of Environment, 251, 112111. https://doi.org/10.1016/J.RSE.2020.112111
  • Ghorbanian, A., Kakooei, M., Amani, M., Mahdavi, S., Mohammadzadeh, A., & Hasanlou, M. (2020). Improved land cover map of Iran using sentinel imagery within Google Earth Engine and a novel automatic workflow for land cover classification using migrated training samples. Isprs Journal of Photogrammetry & Remote Sensing, 167, 276–288. https://doi.org/10.1016/J.ISPRSJPRS.2020.07.013
  • Gruber, A., De Lannoy, G., Albergel, C., Al-Yaari, A., Brocca, L., Calvet, J. C., Colliander, A., Cosh, M., Crow, W., Dorigo, W., Draper, C., Hirschi, M., Kerr, Y., Konings, A., Lahoz, W., McColl, K., Montzka, C., Muñoz-Sabater, J., Wigneron, J. P. (2020). Validation practices for satellite soil moisture retrievals: What are (the) errors? Remote Sensing of Environment, 244, 111806. https://doi.org/10.1016/j.rse.2020.111806
  • Han, Y., Wang, Y., & Zhao, Y. (2010). Estimating soil moisture conditions of the greater changbai mountains by land surface temperature and NDVI. IEEE Transactions on Geoscience and Remote Sensing, 48(6), 2509–2515. https://doi.org/10.1109/TGRS.2010.2040830
  • Hu, F., Wei, Z., Zhang, W., Dorjee, D., & Meng, L. (2020). A spatial downscaling method for SMAP soil moisture through visible and shortwave-infrared remote sensing data. Journal of Hydrology, 590, 125360. https://doi.org/10.1016/j.jhydrol.2020.125360
  • Jagdhuber, T., Baur, M., Akbar, R., Das, N. N., Link, M., He, L., & Entekhabi, D. (2019). Estimation of active-passive microwave covariation using SMAP and Sentinel-1 data. Remote Sensing of Environment, 225, 458–468. https://doi.org/10.1016/J.RSE.2019.03.021
  • Jung, C., Lee, Y., Cho, Y., & Kim, S. (2017). A study of spatial soil moisture estimation using a multiple linear regression model and MODIS land surface temperature data corrected by conditional merging. Remote Sensing, 9(8), 870. https://doi.org/10.3390/rs9080870
  • Khazaei, M., Hamzeh, S., Samani, N. N., Muhuri, A., Goïta, K., & Weng, Q. (2023). A web-based system for satellite-based high-resolution global soil moisture maps. Computers and Geosciences, 170, 170. https://doi.org/10.1016/j.cageo.2022.105250
  • Khellouk, R., Barakat, A., Boudhar, A., Hadria, R., Lionboui, H., el Jazouli, A., Rais, J., el Baghdadi, M., & Benabdelouahab, T. (2020). Spatiotemporal monitoring of surface soil moisture using optical remote sensing data: A case study in a semi-arid area. Journal of Spatial Science, 65(3), 481–499. https://doi.org/10.1080/14498596.2018.1499559
  • Kim, G., & Barros, A. P. (2002). Downscaling of remotely sensed soil moisture with a modified fractal interpolation method using contraction mapping and ancillary data. Remote Sensing of Environment, 83(3), 400–413. https://doi.org/10.1016/S0034-4257(02)00044-5
  • Kim, H., Parinussa, R., Konings, A. G., Wagner, W., Cosh, M. H., Lakshmi, V., Zohaib, M., & Choi, M. (2018). Global-scale assessment and combination of SMAP with ASCAT (active) and AMSR2 (passive) soil moisture products. Remote Sensing of Environment, 204, 260–275. https://doi.org/10.1016/j.rse.2017.10.026
  • Lievens, H., Tomer, S. K., Al Bitar, A., De Lannoy, G. J. M., Drusch, M., Dumedah, G., Franssen, H.-J. H., Kerr, Y. H., Martens, B., Pan, M., Roundy, J. K., Vereecken, H., Walker, J. P., Wood, E. F., Verhoest, N. E. C., & Pauwels, V. R. N. (2015). SMOS soil moisture assimilation for improved hydrologic simulation in the Murray Darling Basin, Australia. Remote Sensing of Environment, 168, 146–162. https://doi.org/10.1016/j.rse.2015.06.025
  • Malbéteau, Y., Merlin, O., Molero, B., Rüdiger, C., & Bacon, S. (2016). DisPATCh as a tool to evaluate coarse-scale remotely sensed soil moisture using localized in situ measurements: Application to SMOS and AMSR-E data in Southeastern Australia. International Journal of Applied Earth Observation and Geoinformation, 45, 221–234. https://doi.org/10.1016/j.jag.2015.10.002
  • Ma, H., Zeng, J., Chen, N., Zhang, X., Cosh, M. H., & Wang, W. (2019). Satellite surface soil moisture from SMAP, SMOS, AMSR2 and ESA CCI: A comprehensive assessment using global ground-based observations. Remote Sensing of Environment, 231, 111215. https://doi.org/10.1016/J.RSE.2019.111215
  • McNally, A., Shukla, S., Arsenault, K. R., Wang, S., Peters-Lidard, C. D., & Verdin, J. P. (2016). Evaluating ESA CCI soil moisture in East Africa. International Journal of Applied Earth Observation and Geoinformation, 48, 96–109. https://doi.org/10.1016/j.jag.2016.01.001
  • Mecklenburg, S., Drusch, M., Kerr, Y. H., Font, J., Martin-Neira, M., Delwart, S., Buenadicha, G., Reul, N., Daganzo-Eusebio, E., Oliva, R., & Crapolicchio, R. (2012). ESA’s soil moisture and ocean salinity mission: Mission performance and operations. IEEE Transactions on Geoscience and Remote Sensing, 50(5), 1354–1366. https://doi.org/10.1109/TGRS.2012.2187666
  • Merlin, O., Al Bitar, A., Walker, J. P., & Kerr, Y. (2010). An improved algorithm for disaggregating microwave-derived soil moisture based on red, near-infrared and thermal-infrared data. Remote Sensing of Environment, 114(10), 2305–2316. https://doi.org/10.1016/j.rse.2010.05.007
  • Merlin, O., Chehbouni, A. G., Kerr, Y. H., Njoku, E. G., & Entekhabi, D. (2005). A combined modeling and multispectral/multiresolution remote sensing approach for disaggregation of surface soil moisture: Application to SMOS configuration. IEEE Transactions on Geoscience and Remote Sensing, 43(9), 2036–2050. https://doi.org/10.1109/TGRS.2005.853192
  • Merlin, O., Walker, J. P., Chehbouni, A., & Kerr, Y. (2008). Towards deterministic downscaling of SMOS soil moisture using MODIS derived soil evaporative efficiency. Remote Sensing of Environment, 112(10), 3935–3946. https://doi.org/10.1016/j.rse.2008.06.012
  • Mirmazloumi, S. M., Kakooei, M., Mohseni, F., Ghorbanian, A., Amani, M., Crosetto, M., & Monserrat, O. (2022). ELULC‐10, a 10 m European land use and land cover map using Sentinel and Landsat data in Google Earth Engine. Remote Sensing, 14(13). https://doi.org/10.3390/rs14133041
  • Mirmazloumi, S. M., Sahebi, M. R., & Amani, M. (2021). New empirical backscattering models for estimating bare soil surface parameters. International Journal of Remote Sensing, 42(5), 1928–1947. https://doi.org/10.1080/01431161.2020.1847353
  • Mohanty, B. P., Cosh, M. H., Lakshmi, V., & Montzka, C. (2017). Soil moisture remote sensing: State-of-the-science. Vadose Zone Journal, 16(1), 1–9. https://doi.org/10.2136/vzj2016.10.0105
  • Mohseni, F., Kiani Sadr, M., Eslamian, S., Areffian, A., & Khoshfetrat, A. (2021). Spatial and temporal monitoring of drought conditions using the satellite rainfall estimates and remote sensing optical and thermal measurements. Advances in Space Research, 67(12), 3942–3959. https://doi.org/10.1016/J.ASR.2021.02.017
  • Mohseni, F., Mirmazloumi, S. M., Mokhtarzade, M., Jamali, S., & Homayouni, S. (2022). Global evaluation of SMAP/Sentinel-1 soil moisture products. Remote Sensing, 14(18), 4624. https://doi.org/10.3390/rs14184624
  • Mohseni, F., & Mokhtarzade, M. (2020). A new soil moisture index driven from an adapted long-term temperature-vegetation scatter plot using MODIS data. Journal of Hydrology, 581, 124420. https://doi.org/10.1016/j.jhydrol.2019.124420
  • Mohseni, F., & Mokhtarzade, M. (2021). The synergistic use of microwave coarse-scale measurements and two adopted high-resolution indices driven from long-term T-V scatter plot for fine-scale soil moisture estimation. GIScience and Remote Sensing, 58(3), 455–482. https://doi.org/10.1080/15481603.2021.1906056
  • Montzka, C., Cosh, M., Nickeson, J., Camacho, F., Bayat, B., Al Bitar, A., Berg, A., Bindlish, R., Bogena, H. R., & Bolten, J. D. (2021). Soil Moisture Product Validation Good Practices Protocol, Committee on Earth Observation Satellites Working Group on Calibration and Validation Land Product Validation Subgroup, Version 1.0. https://ntrs.nasa.gov.
  • Montzka, C., Jagdhuber, T., Horn, R., Bogena, H. R., Hajnsek, I., Reigber, A., & Vereecken, H. (2016). Investigation of SMAP fusion algorithms with airborne active and passive L-band microwave remote sensing. IEEE Transactions on Geoscience and Remote Sensing, 54(7), 3878–3889. https://doi.org/10.1109/TGRS.2016.2529659
  • Montzka, C., Rötzer, K., Bogena, H. R., Sanchez, N., & Vereecken, H. (2018). A new soil moisture downscaling approach for SMAP, SMOS, and ASCAT by predicting sub-grid variability. Remote Sensing, 10(3), 427. https://doi.org/10.3390/rs10030427
  • Montzka, C., Rötzer, K., Bogena, H. R., Sanchez, N., & Vereecken, H. (2021). A New soil moisture downscaling approach for SMAP, SMOS, and ASCAT by predicting sub-grid variability. https://doi.org/10.1594/PANGAEA.878889
  • Mutanga, O., & Kumar, L. (2019). Google Earth Engine applications. Remote Sensing, 11(5), 591. https://doi.org/10.3390/rs11050591
  • Myeni, L., Moeletsi, M. E., & Clulow, A. D. (2019). Present status of soil moisture estimation over the African continent. Journal of Hydrology: Regional Studies, 21, 14–24. https://doi.org/10.1016/J.EJRH.2018.11.004
  • Narayan, U., & Lakshmi, V. (2008). Characterizing subpixel variability of low resolution radiometer derived soil moisture using high resolution radar data. Water Resources Research, 44(6). https://doi.org/10.1029/2006WR005817
  • Naz, B. S., Kollet, S., Franssen, H. J. H., Montzka, C., & Kurtz, W. (2020). A 3 km spatially and temporally consistent European daily soil moisture reanalysis from 2000 to 2015. Scientific Data, 7(1). https://doi.org/10.1038/s41597-020-0450-6
  • Neuhauser, M., Verrier, S., Merlin, O., Molero, B., Suere, C., & Mangiarotti, S. (2019). Multi-scale statistical properties of disaggregated SMOS soil moisture products in Australia. Advances in Water Resources, 134, 134. https://doi.org/10.1016/j.advwatres.2019.103426
  • Nichols, S. (2011). Review and evaluation of remote sensing methods for soil-moisture estimation. Journal of Photonics for Energy, 028001. https://doi.org/10.1117/1.3534910
  • Pellenq, J., Kalma, J., Boulet, G., Saulnier, G. M., Wooldridge, S., Kerr, Y., & Chehbouni, A. (2003). A disaggregation scheme for soil moisture based on topography and soil depth. Journal of Hydrology, 276(1–4), 112–127. https://doi.org/10.1016/S0022-1694(03)00066-0
  • Peng, J., Albergel, C., Balenzano, A., Brocca, L., Cartus, O., Cosh, M. H., Crow, W. T., Dabrowska-Zielinska, K., Dadson, S., Davidson, M. W. J., de Rosnay, P., Dorigo, W., Gruber, A., Hagemann, S., Hirschi, M., Kerr, Y. H., Lovergine, F., Mahecha, M. D., Marzahn, P., Loew, A. (2021). A roadmap for high-resolution satellite soil moisture applications – confronting product characteristics with user requirements. Remote Sensing of Environment, 252, 112162. https://doi.org/10.1016/j.rse.2020.112162
  • Peng, J., Loew, A., Merlin, O., & Verhoest, N. E. C. (2017). A review of spatial downscaling of satellite remotely sensed soil moisture. Reviews of Geophysics, 55(2), 341–366. https://doi.org/10.1002/2016RG000543
  • Petropoulos, G. P., Ireland, G., & Barrett, B. (2015). Surface soil moisture retrievals from remote sensing: Current status, products & future trends. Physics and Chemistry of the Earth, Parts A/B/C, 83, 36–56. https://doi.org/10.1016/j.pce.2015.02.009
  • Piles, M., Camps, A., Vall-Llossera, M., Corbella, I., Panciera, R., Rudiger, C., Kerr, Y. H., & Walker, J. (2011). Downscaling SMOS-derived soil moisture using MODIS visible/infrared data. IEEE Transactions on Geoscience and Remote Sensing, 49(9), 3156–3166. https://doi.org/10.1109/TGRS.2011.2120615
  • Piles, M., Camps, A., Vall-Llossera, M., Sánchez, N., Martínez-Fernández, J., Monerris, A., Baroncini-Turricchia, G., Pérez-Gutiérrez, C., Aguasca, A., Acevo, R., & Bosch-Lluís, X. (2010). Soil moisture downscaling activities at the REMEDHUS Cal/Val site and its application to SMOS. 2010 11th Specialist Meeting on Microwave Radiometry and Remote Sensing of the Environment, 17–21. https://doi.org/10.1109/MICRORAD.2010.5559599
  • Piles, M., Petropoulos, G. P., Sánchez, N., González-Zamora, Á., & Ireland, G. (2016). Towards improved spatio-temporal resolution soil moisture retrievals from the synergy of SMOS and MSG SEVIRI spaceborne observations. Remote Sensing of Environment, 180, 403–417. https://doi.org/10.1016/j.rse.2016.02.048
  • Piou, C., Gay, P. E., Benahi, A. S., Babah Ebbe, M. A. O., Chihrane, J., Ghaout, S., Cisse, S., Diakite, F., Lazar, M., Cressman, K., Merlin, O., Escorihuela, M. J., & Mcinnis‐Ng, C. (2019). Soil moisture from remote sensing to forecast desert locust presence. Journal of Applied Ecology, 56(4), 966–975. https://doi.org/10.1111/1365-2664.13323
  • Pradhan, S. N., Anjum, M., & Jena, P. (2018). Estimation of soil moisture content by remote sensing methods: A review. Journal of Pharmacognosy & Phytochemistry, 7(1S), 1786–1792.
  • Qu, Y., Zhu, Z., Montzka, C., Chai, L., Liu, S., Ge, Y., Liu, J., Lu, Z., He, X., Zheng, J., & Han, T. (2021). Inter-comparison of several soil moisture downscaling methods over the Qinghai-Tibet Plateau, China. Journal of Hydrology, 592, 125616. https://doi.org/10.1016/j.jhydrol.2020.125616
  • Reichle, R. H., Liu, Q., Koster, R. D., Ardizzone, J. V., Colliander, A., Crow, W. T., De Lannoy, G. J. M., & Kimball, J. S. (2022). Soil moisture active passive (SMAP) project assessment report for version 6 of the L4_SM data product. Technical Report Series on Global Modeling and Data Assimilation, 60.
  • Sabaghy, S., Walker, J. P., Renzullo, L. J., & Jackson, T. J. (2018). Spatially enhanced passive microwave derived soil moisture: Capabilities and opportunities. Remote Sensing of Environment, 209, 551–580. https://doi.org/10.1016/j.rse.2018.02.065
  • Sahaar, S. A., Niemann, J. D., & Elhaddad, A. (2022). Using regional characteristics to improve uncalibrated estimation of rootzone soil moisture from optical/thermal remote-sensing. Remote Sensing of Environment, 273, 112982. https://doi.org/10.1016/j.rse.2022.112982
  • Sánchez-Ruiz, S., Piles, M., Sánchez, N., Martínez-Fernández, J., Vall-Llossera, M., & Camps, A. (2014). Combining SMOS with visible and near/shortwave/thermal infrared satellite data for high resolution soil moisture estimates. Journal of Hydrology, 516, 273–283. https://doi.org/10.1016/j.jhydrol.2013.12.047
  • Seneviratne, S. I., Lüthi, D., Litschi, M., & Schär, C. (2006). Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), 205–209. https://doi.org/10.1038/nature05095
  • Shin, Y., & Mohanty, B. P. (2013). Development of a deterministic downscaling algorithm for remote sensing soil moisture footprint using soil and vegetation classifications. Water Resources Research, 49(10), 6208–6228. https://doi.org/10.1002/wrcr.20495
  • Song, C., Jia, L., & Menenti, M. (2013). Retrieving high-resolution surface soil moisture by downscaling AMSR-E brightness temperature using MODIS LST and NDVI data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 7(3), 935–942. https://doi.org/10.1109/JSTARS.2013.2272053
  • Srivastava, P. K., Han, D., Ramirez, M. R., & Islam, T. (2013). Machine learning techniques for downscaling SMOS satellite soil moisture using MODIS land surface temperature for hydrological application. Water Resources Management, 27(8), 3127–3144. https://doi.org/10.1007/s11269-013-0337-9
  • Tamiminia, H., Salehi, B., Mahdianpari, M., Quackenbush, L., Adeli, S., & Brisco, B. (2020). Google Earth Engine for geo-big data applications: A meta-analysis and systematic review. ISPRS Journal of Photogrammetry & Remote Sensing, 164, 152–170. https://doi.org/10.1016/J.ISPRSJPRS.2020.04.001
  • van de Giesen, N., Hut, R., & Selker, J. (2014). The Trans‐African hydro‐meteorological observatory (TAHMO). WIREs Water, 1(4), 341–348. https://doi.org/10.1002/wat2.1034
  • Vereecken, H., Huisman, J. A., Pachepsky, Y., Montzka, C., van der Kruk, J., Bogena, H., Weihermüller, L., Herbst, M., Martinez, G., & Vanderborght, J. (2014). On the spatio-temporal dynamics of soil moisture at the field scale. Journal of Hydrology, 516, 76–96. https://doi.org/10.1016/J.JHYDROL.2013.11.061
  • Wang, W., Huang, D., Wang, X. G., Liu, Y. R., & Zhou, F. (2011). Estimation of soil moisture using trapezoidal relationship between remotely sensed land surface temperature and vegetation index. Hydrology and Earth System Sciences, 15(5), 1699–1712. https://doi.org/10.5194/hess-15-1699-2011
  • Xu, C., Qu, J. J., Hao, X., Cosh, M. H., Prueger, J. H., Zhu, Z., & Gutenberg, L. (2018). Downscaling of surface soil moisture retrieval by combining MODIS/Landsat and in situ measurements. Remote Sensing, 10(2), 210. https://doi.org/10.3390/rs10020210
  • Xu, Y., Wang, L., Ma, Z., Li, B., Bartels, R., Liu, C., Zhang, X., & Dong, J. (2020). Spatially explicit model for statistical downscaling of satellite passive microwave soil moisture. IEEE Transactions on Geoscience and Remote Sensing, 58(2), 1182–1191. https://doi.org/10.1109/TGRS.2019.2944421
  • Xu, M., Yao, N., Yang, H., Xu, J., Hu, A., de Goncalves, L. G. G., & Liu, G. (2022). Downscaling SMAP soil moisture using a wide & deep learning method over the continental United States. Journal of Hydrology, 609, 127784. https://doi.org/10.1016/j.jhydrol.2022.127784
  • Xu, W., Zhang, Z., Long, Z., & Qin, Q. (2021). Downscaling SMAP soil moisture products with convolutional neural network. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 4051–4062. https://doi.org/10.1109/JSTARS.2021.3069774
  • Zhao, W., & Duan, S. B. (2020). Reconstruction of daytime land surface temperatures under cloud-covered conditions using integrated MODIS/Terra land products and MSG geostationary satellite data. Remote Sensing of Environment, 247, 111931. https://doi.org/10.1016/j.rse.2020.111931
  • Zhao, W., Sánchez, N., Lu, H., & Li, A. (2018). A spatial downscaling approach for the SMAP passive surface soil moisture product using random forest regression. Journal of Hydrology, 563, 1009–1024. https://doi.org/10.1016/j.jhydrol.2018.06.081
  • Zhao, W., Wen, F., Wang, Q., Sanchez, N., & Piles, M. (2021). Seamless downscaling of the ESA CCI soil moisture data at the daily scale with MODIS land products. Journal of Hydrology, 603, 126930. https://doi.org/10.1016/J.JHYDROL.2021.126930
  • Zheng, J., Lü, H., Crow, W. T., Zhao, T., Merlin, O., Rodriguez-Fernandez, N., Shi, J., Zhu, Y., Su, J., Kang, C. S., Wang, X., & Gou, Q. (2021a). Soil moisture downscaling using multiple modes of the DISPATCH algorithm in a semi-humid/humid region. International Journal of Applied Earth Observation and Geoinformation, 104, 102530. https://doi.org/10.1016/j.jag.2021.102530
  • Zheng, J., Lü, H., Crow, W. T., Zhao, T., Merlin, O., Rodriguez-Fernandez, N., Shi, J., Zhu, Y., Su, J., Kang, C. S., Wang, X., & Gou, Q. (2021b). Soil moisture downscaling using multiple modes of the DISPATCH algorithm in a semi-humid/humid region. International Journal of Applied Earth Observation and Geoinformation, 104, 102530. https://doi.org/10.1016/j.jag.2021.102530
  • Zhu, X., Duan, S. B., Li, Z. L., Wu, P., Wu, H., Zhao, W., & Qian, Y. (2022). Reconstruction of land surface temperature under cloudy conditions from Landsat 8 data using annual temperature cycle model. Remote Sensing of Environment, 281, 113261. https://doi.org/10.1016/j.rse.2022.113261
  • Zreda, M., Shuttleworth, W. J., Zeng, X., Zweck, C., Desilets, D., Franz, T., & Rosolem, R. (2012). COSMOS: The cosmic-ray soil moisture observing system. Hydrology and Earth System Sciences, 16(11), 4079–4099. https://doi.org/10.5194/hess-16-4079-2012
  • Zribi, M., Andre, C., & Decharme, B. (2008). A method for soil moisture estimation in Western Africa based on the ERS scatterometer. IEEE Transactions on Geoscience and Remote Sensing, 46(2), 438–448. https://doi.org/10.1109/TGRS.2007.904582
  • Zribi, M., Foucras, M., Baghdadi, N., Demarty, J., & Muddu, S. (2020). A new reflectivity index for the retrieval of surface soil moisture from radar data. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 818–826. https://doi.org/10.1109/JSTARS.2020.3033132