831
Views
1
CrossRef citations to date
0
Altmetric
Original Research Article

Quantifying the impacts of the COVID-19 pandemic lockdown and the armed conflict with Russia on Sentinel 5P TROPOMI NO2 changes in Ukraine

&
Pages 58-81 | Received 02 May 2023, Accepted 19 Sep 2023, Published online: 11 Oct 2023

References

  • Akimoto, H., & Tanimoto, H. (2022). Rethinking of the adverse effects of NOx-control on the reduction of methane and tropospheric ozone – challenges toward a denitrified society. Atmospheric Environment, 277, 119033. https://doi.org/10.1016/j.atmosenv.2022.119033
  • Barré, J., Petetin, H., Colette, A., Guevara, M., Peuch, V. H., Rouil, L., Engelen, R., Inness, A., Flemming, J., Pérez García-Pando, C., Bowdalo, D., Meleux, F., Geels, C., Christensen, J. H., Gauss, M., Benedictow, A., Tsyro, S., Friese, E., Struzewska, J., and Kaminski, J. W. (2021). Estimating lockdown-induced European NO2 changes using satellite and surface observations and air quality models. Atmospheric Chemistry and Physics, 21(9), 7373–7394. https://doi.org/10.5194/acp-21-7373-2021
  • Cooper, M. J., Martin, R. V., Hammer, M. S., Levelt, P. F., Veefkind, P., Lamsal, L. N., Krotkov, N. A., Brook, J. R., & McLinden, C. A. (2022). Global fine-scale changes in ambient NO2 during COVID-19 lockdowns. Nature, 601(7893), 380–387. https://doi.org/10.1038/s41586-021-04229-0
  • Csiszar, I., Schroeder, W., Giglio, L., Ellicott, E., Vadrevu, K. P., Justice, C. O., & Wind, B. (2014). Active fires from the suomi NPP visible infrared Imaging radiometer suite: Product status and first evaluation results. Journal of Geophysical Research: Atmospheres, 119(2), 803–816. https://doi.org/10.1002/2013JD020453
  • Danylyshyn, B. (2020). The peculiarities of economic crisis due to COVID-19 pandemic in a developing country: Case of Ukraine. Problems and Perspectives in Management, 18(2), 13–22. https://doi.org/10.21511/ppm.18(2).2020.02
  • Dragomir, C. M., Constantin, D.-E., Voiculescu, M., Georgescu, L. P., Merlaud, A., & Roozendael, M. V. (2015). Modeling results of atmospheric dispersion of NO2 in an urban area using METI–LIS and comparison with coincident mobile DOAS measurements. Atmospheric Pollution Research, 6(3), 503–510. https://doi.org/10.5094/APR.2015.056
  • Dumitru, V., Inga, P., Danu, M., Andreas, S., Ievgen, K., & Viktoriia, Y. (2020). Impact on Air Quality in Ukraine and the Republic of Moldova. Retrieved May 01, 2023, from https://www.undp.org/ukraine/publications/covid-19-impact-air-quality-ukraine-and-republic-moldova
  • Friedman, J. H. (2001). Greedy function approximation: A gradient boosting machine. The Annals of Statistics, 29(5), 1189–1232. https://doi.org/10.1214/aos/1013203451
  • Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., & Moore, R. (2017). Google Earth Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of Environment, 202, 18–27. https://doi.org/10.1016/j.rse.2017.06.031
  • Grange, S. K., & Carslaw, D. C. (2019). Using meteorological normalisation to detect interventions in air quality time series. Science of the Total Environment, 653, 578–588. https://doi.org/10.1016/j.scitotenv.2018.10.344
  • Grange, S. K., Carslaw, D. C., Lewis, A. C., Boleti, E., & Hueglin, C. (2018). Random forest meteorological normalisation models for Swiss PM10 trend analysis. Atmospheric Chemistry and Physics, 18(9), 6223–6239. https://doi.org/10.5194/acp-18-6223-2018
  • Grange, S. K., Lee, J. D., Drysdale, W. S., Lewis, A. C., Hueglin, C., Emmenegger, L., & Carslaw, D. C. (2021). COVID-19 lockdowns highlight a risk of increasing ozone pollution in European urban areas. Atmospheric Chemistry and Physics, 21(5), 4169–4185. https://doi.org/10.5194/acp-21-4169-2021
  • Hersbach, H., Bell, B., Berrisford, P., Biavati, G., Horányi, A., Muñoz Sabater, J., Nicolas, J., Peubey, C., Radu, R., Hersbach, I., Schepers, D., Simmons, A., Soci, C., Dee, D., & Thépaut, J.-N. (2023). ERA5 hourly data on single levels from 1940 to present. Copernicus Climate Change Service (C3S) Climate Data Store (CDS). Retrieved July 21, 2023, from https://doi.org/10.24381/cds.adbb2d47
  • Júlia, L., Dylan, M., Danielle, R., & Adrian, B. (2022). Nearly 3 million people have left Ukraine, foreshadowing a massive humanitarian crisis. Washington Post. https://www.washingtonpost.com/world/2022/02/27/ukraine-refugees-photos-videos/
  • Ke, G., Meng, Q., Finley, T., Wang, T., Chen, W., Ma, W., Ye, Q., & Liu, T.-Y. (2017). LightGBM: A highly efficient gradient boosting decision tree. In Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fergus, R., Vishwanathan, S. (2017). ln R. Garnett (Ed), Advances in neural information processing systems (Vol. 30). Curran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/6449f44a102fde848669bdd9eb6b76fa-Paper.pdf
  • Kendrick, C. M., Koonce, P., & George, L. A. (2015). Diurnal and seasonal variations of NO, NO2 and PM2.5 mass as a function of traffic volumes alongside an urban arterial. Atmospheric Environment, 122, 133–141. https://doi.org/10.1016/j.atmosenv.2015.09.019
  • Lauri, M., & Rosa, G. (2021). Health impacts of coal power plant emissions in Ukraine. Retrieved May 01, 2023, from https://energyandcleanair.org/publication/health-impacts-of-coal-power-plant-emissions-in-ukraine/
  • Marécal, V., Peuch, V.-H., Andersson, C., Andersson, S., Arteta, J., Beekmann, M., Benedictow, A., Bergström, R., Bessagnet, B., Cansado, A., Chéroux, F., Colette, A., Coman, A., Curier, R. L., van der Gon, H. A. C., Drouin, A., Elbern, H., Emili, E., & Engelen, R. J. (2015). A regional air quality forecasting system over Europe: The MACC-II daily ensemble production. Geoscientific Model Development, 8(9), 2777–2813. https://doi.org/10.5194/gmd-8-2777-2015
  • Miyazaki, K., & Bowman, K. (2023). Predictability of fossil fuel CO2 from air quality emissions. Nature Communications, 14(1), 1604. https://doi.org/10.1038/s41467-023-37264-8
  • Draft Ukraine Recovery Plan, Materials of the “Energy security” Working Group. (2022, July). The National Council for the Recovery of Ukraine from the Consequences of the War. Retrieved May 01, 2023, from https://uploads-ssl.webflow.com/621f88db25fbf24758792dd8/62dacafb804d22348c8d8c08__Energy%20Security.pdf
  • Nichita, G., & Ana, M. (2023, January 23). War in Ukraine One Year On, Nowhere Safe. https://acleddata.com/2023/03/01/war-in-ukraine-one-year-on-nowhere-safe/
  • Pereira, P., Zhao, W., Symochko, L., Inacio, M., Bogunovic, I., & Barcelo, D. (2022). The Russian‐Ukrainian armed conflict will push back the sustainable development goals. Geography and Sustainability, 3(3), 277–287. https://doi.org/10.1016/j.geosus.2022.09.003
  • Petetin, H., Bowdalo, D., Soret, A., Guevara, M., Jorba, O., Serradell, K., & Pérez Garc\’{\i}a-Pando, C. (2020). Meteorology-normalized impact of the COVID-19 lockdown upon NO_2 pollution in Spain. Atmospheric Chemistry and Physics, 20(18), 11119–11141. https://doi.org/10.5194/acp-20-11119-2020
  • Raleigh, C., Linke, A., Hegre, H., & Karlsen, J. (2010). Introducing ACLED: An armed conflict location and event dataset. Journal of Peace Research, 47(5), 651–660. https://doi.org/10.1177/0022343310378914
  • Savenets, M. (2021). Air pollution in Ukraine: A view from the Sentinel-5P satellite. Időjárás, 125(2), 271–290. https://doi.org/10.28974/idojaras.2021.2.6
  • Schiermeier, Q. (2020). Why pollution is plummeting in some cities — but not others. Nature, 580(7803), 313–313. https://doi.org/10.1038/d41586-020-01049-6
  • Schroeder, W., Oliva, P., Giglio, L., & Csiszar, I. A. (2014). The New VIIRS 375 m active fire detection data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143, 85–96. https://doi.org/10.1016/j.rse.2013.12.008
  • Shelestov, A., Yailymova, H., Yailymov, B., & Kussul, N. (2021). Air quality estimation in Ukraine using SDG 11.6.2 indicator assessment. Remote Sensing, 13(23), 4769. https://doi.org/10.3390/rs13234769
  • Shi, Z., Song, C., Liu, B., Lu, G., Xu, J., Van Vu, T., Elliott, R. J. R., Li, W., Bloss, W. J., & Harrison, R. M. (2021). Abrupt but smaller than expected changes in surface air quality attributable to COVID-19 lockdowns. Science Advances, 7(3). https://doi.org/10.1126/sciadv.abd6696
  • S[&]T, HARP Developers. 2023. https://github.com/stcorp/harp
  • Stocker, T. F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S. K., Boschung, J., Nauels, A., Xia, Y., Bex, V., & Midgley, P. M. (2013). IPCC, 2013: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, United Kingdom and New York, NY, USA: Cambridge University Press. Retrieved May 01, 2023, from https://www.ipcc.ch/report/ar5/wg1/
  • van Geffen, J., Eskes, H., Compernolle, S., Pinardi, G., Verhoelst, T., Lambert, J.-C., Sneep, M., Ter Linden, M., Ludewig, A., Boersma, K. F., & Veefkind, J. P. (2022). Sentinel-5P TROPOMI NO$_2$ retrieval: Impact of version v2.2 improvements and comparisons with OMI and ground-based data. Atmospheric Measurement Techniques, 15(7), 2037–2060. https://doi.org/10.5194/amt-15-2037-2022
  • Wallace, J., & Kanaroglou, P. (2009). The effect of temperature inversions on ground-level nitrogen dioxide (NO2) and fine particulate matter (PM2.5) using temperature profiles from the Atmospheric infrared sounder (AIRS). Science of the Total Environment, 407(18), 5085–5095. https://doi.org/10.1016/j.scitotenv.2009.05.050
  • Wang, C., Wu, Q., Weimer, M., & Zhu, E. (Eric). (2021, April). FLAML: A fast and lightweight AutoML library. Fourth Conference on Machine Learning and Systems (MLSys 2021). https://www.microsoft.com/en-us/research/publication/flaml-a-fast-and-lightweight-automl-library/
  • Zalakeviciute, R., Mejia, D., Alvarez, H., Bermeo, X., Bonilla-Bedoya, S., Rybarczyk, Y., & Lamb, B. (2022). War impact on air quality in Ukraine. Sustainability, 14(21), 13832. https://doi.org/10.3390/su142113832