1,592
Views
1
CrossRef citations to date
0
Altmetric
Original Research Article

Change in observed long-term greening across Switzerland – evidence from a three decades NDVI time-series and its relationship with climate and land cover factors

, ORCID Icon & ORCID Icon
Pages 1-32 | Received 17 May 2023, Accepted 04 Oct 2023, Published online: 20 Oct 2023

References

  • Angélica, G.-P. K., David, M.-R., Domínguez-Amarillo, S., & Roberto, G.-C. J. (2022). Remote Sensing for the assessment of ecosystem services provided by Urban vegetation. A review of the methods applied. Urban Forestry & Urban Greening, 74, 127636. https://doi.org/10.1016/j.ufug.2022.127636
  • Astola, H., Häme, T., Sirro, L., Molinier, M., & Kilpi, J. (2019). Comparison of sentinel-2 and landsat 8 imagery for forest variable prediction in boreal region. Remote Sensing of Environment, 223, 257–273. https://doi.org/10.1016/j.rse.2019.01.019
  • Barras, A. G., Braunisch, V., Arlettaz, R., & Maiorano, L. (2021). Predictive models of distribution and abundance of a threatened mountain species show that impacts of climate change overrule those of land use change. Diversity & Distributions, 27(6), 989–1004. https://doi.org/10.1111/ddi.13247
  • Beniston, M., Rebetez, M., Giorgi, F., & Marinucci, M. R. (1994). An analysis of regional climate change in Switzerland. Theoretical and Applied Climatology, 49(3), 135–159. https://doi.org/10.1007/BF00865530
  • Brandt, M., Mbow, C., Diouf, A. A., Verger, A., Samimi, C., & Fensholt, R. (2015). Ground- and satellite-based evidence of the biophysical mechanisms behind the greening Sahel. Global Change Biology, 21(4), 1610–1620. https://doi.org/10.1111/gcb.12807
  • Brun, P., Psomas, A., Ginzler, C., Thuiller, W., Zappa, M., & Zimmermann, N. E. (2020). Large-scale early-wilting response of Central European forests to the 2018 extreme drought. Global Chang Biology, 26, 7021–7035.
  • Buras, A., Rammig, A., & Zang, C. S. (2020). Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences, 17, 1655–1672. https://doi.org/10.5194/bg-17-1655-2020
  • Carlson, B. Z., Corona, M. C., Dentant, C., Bonet, R., Thuiller, W., & Choler, P. (2017). Observed long-term greening of alpine vegetation—A case study in the French alps. Environmental Research Letters, 12(11), 114006. https://doi.org/10.1088/1748-9326/aa84bd
  • Chatenoux, B., Richard, J.-P., Small, D., Roeoesli, C., Wingate, V., Poussin, C., Rodila, D., Peduzzi, P., Steinmeier, C., Ginzler, C., Psomas, A., Schaepman, M. E., & Giuliani, G. (2021). The Swiss data cube, analysis ready data archive using earth observations of Switzerland. Scientific Data, 8(1), 295. https://doi.org/10.1038/s41597-021-01076-6
  • Chênes, C., Giuliani, G., & Ray, N. (2021). Modelling physical accessibility to public green spaces in Switzerland to support the SDG11. Geomatics, 1(4), 383–398. Article 4. https://doi.org/10.3390/geomatics1040022
  • Choler, P., Bayle, A., Carlson, B. Z., Randin, C., Filippa, G., & Cremonese, E. (2021). The tempo of greening in the European alps: Spatial variations on a common theme. Global Change Biology, 27(21), 5614–5628. https://doi.org/10.1111/gcb.15820
  • Chu, H., Venevsky, S., Wu, C., & Wang, M. (2019). NDVI-based vegetation dynamics and its response to climate changes at amur-heilongjiang river basin from 1982 to 2015. Science of the Total Environment, 650, 2051–2062. https://doi.org/10.1016/j.scitotenv.2018.09.115
  • Cioldi, F., Conedera, M., Giudici, F., & Herold, A. (2021). Dynamique évolutive de la forêt au Sud des Alpes suisses. Schweizerische Zeitschrift für Forstwesen, 172(5), 318–329. https://doi.org/10.3188/szf.2021.0318
  • Corona-Lozada, M. C., Morin, S., & Choler, P. (2019). Drought offsets the positive effect of summer heat waves on the canopy greenness of mountain grasslands. Agricultural and Forest Meteorology, 276–277, 107617. https://doi.org/10.1016/j.agrformet.2019.107617
  • Cortés, J., Mahecha, M. D., Reichstein, M., Myneni, R. B., Chen, C., & Brenning, A. (2021). Where are global vegetation greening and browning trends significant? Geophysical Research Letters, 48(6), e2020GL091496. https://doi.org/10.1029/2020GL091496
  • de Beurs, K. M., & Henebry, G. M. (2004). Trend analysis of the pathfinder AVHRR land (PAL) NDVI data for the deserts of central asia. IEEE Geoscience and Remote Sensing Letters, 1(4), 282–286. https://doi.org/10.1109/LGRS.2004.834805
  • Dhu, T., Dunn, B., Lewis, B., Lymburner, L., Mueller, N., Telfer, E., Lewis, A., McIntyre, A., Minchin, S., & Phillips, C. (2017). Digital earth Australia – unlocking new value from earth observation data. Big Earth Data, 1(1–2), 64–74. https://doi.org/10.1080/20964471.2017.1402490
  • Dhu, T., Giuliani, G., Juárez, J., Kavvada, A., Killough, B., Merodio, P., Minchin, S., & Ramage, S. (2019). National Open data cubes and their contribution to country-level development policies and practices. Data, 4(4), 144. https://doi.org/10.3390/data4040144
  • Dwyer, J., Roy, D., Sauer, B., Jenkerson, C., Zhang, H., & Lymburner, L. (2018). Analysis ready data: Enabling analysis of the Landsat archive. Remote Sensing, 10(9), 1363. https://doi.org/10.20944/preprints201808.0029.v1
  • Ernst, S., Lymburner, L., Sixsmith, J., Ernst, S., Lymburner, L., & Sixsmith, J. (2018). Implications of pixel quality flags on the observation density of a continental Landsat archive. Remote Sensing, 10(10), 1570. https://doi.org/10.3390/rs10101570
  • Federal Statistical Office. 2020. https://www.bfs.admin.ch/bfs/en/home/statistics/catalogues-databases/publications.assetdetail.14838314.html
  • Ferreira, K. R., Queiroz, G. R., Vinhas, L., Marujo, R. F. B., Simoes, R. E. O., Picoli, M. C. A., Camara, G., Cartaxo, R., Gomes, V. C. F., Santos, L. A., Sanchez, A. H., Arcanjo, J. S., Fronza, J. G., Noronha, C. A., Costa, R. W., Zaglia, M. C., Zioti, F., Korting, T. S., Soares, A. R. … Fonseca, L. M. G. (2020). Earth observation data cubes for Brazil: Requirements, methodology and products. Remote Sensing, 12(24), 4033. Article 24. https://doi.org/10.3390/rs12244033
  • Filippa, G., Cremonese, E., Galvagno, M., Isabellon, M., Bayle, A., Choler, P., Carlson, B. Z., Gabellani, S., Morra di Cella, U., & Migliavacca, M. (2019). Climatic drivers of greening trends in the Alps. Remote Sensing, 11(21), 2527. Article 21. https://doi.org/10.3390/rs11212527
  • Gao, W., Zheng, C., Liu, X., Lu, Y., Chen, Y., Wei, Y., & Ma, Y. (2022). NDVI-based vegetation dynamics and their responses to climate change and human activities from 1982 to 2020: A case study in the mu us Sandy Land, China. Ecological Indicators, 137, 108745. https://doi.org/10.1016/j.ecolind.2022.108745
  • Gehrig-Fasel, J., Guisan, A., & Zimmermann, N. E. (2007). Tree line shifts in the Swiss Alps: Climate change or land abandonment? Journal of Vegetation Science, 18(4), 571–582. https://doi.org/10.1111/j.1654-1103.2007.tb02571.x
  • Giuliani, G., Cazeaux, H., Burgi, P.-Y., Poussin, C., Richard, J.-P., & Chatenoux, B. (2021). SwissEnvEO: A FAIR national environmental data repository for Earth observation Open Science. Data Science Journal, 20(1). Article 1. https://doi.org/10.5334/dsj-2021-022.
  • Giuliani, G., Chatenoux, B., Benvenuti, A., Lacroix, P., Santoro, M., & Mazzetti, P. (2020). Monitoring land degradation at national level using satellite Earth observation time-series data to support SDG15 – exploring the potential of data cube. Big Earth Data, 4(1), 1–20. https://doi.org/10.1080/20964471.2020.1711633
  • Giuliani, G., Chatenoux, B., Bono, A. D., Rodila, D., Richard, J.-P., Allenbach, K., Dao, H., & Peduzzi, P. (2017). Building an Earth observations data Cube: Lessons learned from the Swiss data Cube (SDC) on generating analysis ready data (ARD). Big Earth Data, 1(1), 1–18. https://doi.org/10.1080/20964471.2017.1398903
  • Giuliani, G., Egger, E., Italiano, J., Poussin, C., Richard, J.-P., & Chatenoux, B. (2020). Essential variables for environmental monitoring: What are the possible contributions of Earth observation data cubes? Data, 5(4), 100. Article 4. https://doi.org/10.3390/data5040100
  • Giuliani, G., Rodila, D., Külling, N., Maggini, R., & Lehmann, A. (2022). Downscaling Switzerland land use/land cover data using nearest neighbors and an expert System. Land, 11(5), 615. Article 5. https://doi.org/10.3390/land11050615
  • Gobiet, A., Kotlarski, S., Beniston, M., Heinrich, G., Rajczak, J., & Stoffel, M. (2014). 21st century climate change in the European Alps—A review. Science of the Total Environment, 493, 1138–1151. https://doi.org/10.1016/j.scitotenv.2013.07.050
  • Gonseth, Y., Wohlgemuth, W., Sansonnens, B., & Buttler, A. (2001). Les régions biogéographiques de la Suisse – Explications et division standard (137; Cahier de l’environnement). Office fédéral de l’environne- ment, des forêts et du paysage.
  • Hamed, K. H., & Ramachandra Rao, A. (1998). A modified Mann-Kendall trend test for autocorrelated data. Canadian Journal of Fisheries and Aquatic Sciences, 204(1), 182–196. https://doi.org/10.1016/S0022-1694(97)00125-X
  • Honeck, E., Castello, R., Chatenoux, B., Richard, J.-P., Lehmann, A., & Giuliani, G. (2018). From a vegetation index to a sustainable development goal indicator: Forest trend monitoring using three decades of Earth observations across Switzerland. ISPRS International Journal of Geo-Information, 7(12), 455. https://doi.org/10.3390/ijgi7120455
  • Hou, W., Gao, J., Wu, S., & Dai, E. (2015). Interannual variations in growing-season NDVI and its correlation with climate variables in the Southwestern Karst Region of China. Remote Sensing, 7(9), 11105–11124. Article 9. https://doi.org/10.3390/rs70911105
  • Huang, S., Tang, L., Hupy, J. P., Wang, Y., & Shao, G. (2020). A commentary review on the use of normalized difference vegetation index (NDVI) in the era of popular remote sensing. Journal of Forestry Research, 32(1), 1–6. https://doi.org/10.1007/s11676-020-01155-1
  • Javed, T., Li, Y., Rashid, S., Li, F., Hu, Q., Feng, H., Chen, X., Ahmad, S., Liu, F., & Pulatov, B. (2021). Performance and relationship of four different agricultural drought indices for drought monitoring in China’s mainland using remote sensing data. Science of the Total Environment, 759, 143530. https://doi.org/10.1016/j.scitotenv.2020.143530
  • Javed, T., Yao, N., Chen, X., Suon, S., & Li, Y. (2020). Drought evolution indicated by meteorological and remote-sensing drought indices under different land cover types in China. Environmental Science and Pollution Research, 27(4), 4258–4274. https://doi.org/10.1007/s11356-019-06629-2
  • Jiang, M., Jia, L., Menenti, M., & Zeng, Y. (2022). Understanding spatial patterns in the drivers of greenness trends in the Sahel-Sudano-Guinean region. Big Earth Data, 1–20. https://doi.org/10.1080/20964471.2022.2146632
  • Jolly, W. M., Nemani, R., & Running, S. W. (2005). A generalized, bioclimatic index to predict foliar phenology in response to climate. Global Change Biology, 11, 619–632. https://doi.org/10.1111/j.1365-2486.2005.00930.x
  • Jong, R. D., Verbesselt, J., Schaepman, M. E., & Bruin, S. D. (2012). Trend changes in global greening and browning: Contribution of short-term trends to longer-term change. Global Change Biology, 18(2), 642–655. https://doi.org/10.1111/j.1365-2486.2011.02578.x
  • Killough, B. (2019). The impact of analysis ready data in the Africa regional data Cube. IGARSS 2019 - 2019 IEEE International Geoscience and Remote Sensing Symposium, 5646–5649. https://doi.org/10.1109/IGARSS.2019.8898321
  • Knoflach, B., Ramskogler, K., Talluto, M., Hofmeister, F., Haas, F., Heckmann, T., Pfeiffer, M., Piermattei, L., Ressl, C., Wimmer, M. H., Geitner, C., Erschbamer, B., & Stötter, J. (2021). Modelling of vegetation dynamics from satellite time series to determine proglacial primary succession in the course of global warming—A case study in the upper martell Valley (Eastern Italian Alps). Remote Sensing, 13(21), 4450. Article 21. https://doi.org/10.3390/rs13214450
  • Lastovicka, J., Svec, P., Paluba, D., Kobliuk, N., Svoboda, J., Hladky, R., & Stych, P. (2020). Sentinel-2 data in an evaluation of the impact of the disturbances on forest vegetation. Remote Sensing, 12(12), 1914. Article 12. https://doi.org/10.3390/rs12121914
  • Loran, C., Munteanu, C., Verburg, P. H., Schmatz, D. R., Bürgi, M., & Zimmermann, N. E. (2017). Long-term change in drivers of forest cover expansion: An analysis for Switzerland (1850-2000). Regional Environmental Change, 17, 2223–2235. https://doi.org/10.1007/s10113-017-1148-y
  • Lucas, R. M., German, S., Metternicht, G., Schmidt, R. K., Owers, C. J., Prober, S. M., Richards, A. E., Tetreault-Campbell, S., Williams, K. J., Mueller, N., Tissott, B., Chua, S. M. T., Cowood, A., Hills, T., Gunawardana, D., McIntyre, A., Chognard, S., Hurford, C. … Horton, C. (2022). A globally relevant change taxonomy and evidence-based change framework for land monitoring. Global Change Biology, 28(21), 6293–6317.
  • Lucas, R., Mueller, N., Siggins, A., Owers, C., Clewley, D., Bunting, P., Kooymans, C., Tissott, B., Lewis, B., Lymburner, L., & Metternicht, G. (2019). Land cover mapping using Digital Earth Australia. Data, 4(4), 143. https://doi.org/10.3390/data4040143
  • Lu, L., Shen, X., & Cao, R. (2021). Elevational movement of vegetation greenness on the Tibetan Plateau: Evidence from the Landsat satellite observations during the last three decades. Atmosphere, 12(2), 161. Article 2. https://doi.org/10.3390/atmos12020161
  • Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. https://doi.org/10.2307/1907187
  • Meroni, M., Fasbender, D., Rembold, F., Atzberger, C., & Klisch, A. (2019). Near real-time vegetation anomaly detection with MODIS NDVI: Timeliness vs. accuracy and effect of anomaly computation options. Remote Sensing of Environment, 221, 508–521. https://doi.org/10.1016/j.rse.2018.11.041
  • MeteoSwiss. (2016a). Monthly and Yearly Mean Temperature: TabsM and TabsY (p. 4). https://www.meteoswiss.admin.ch/content/dam/meteoswiss/de/service-und-publikationen/produkt/raeumliche-daten-temperatur/doc/ProdDoc_TabsM.pdf
  • MeteoSwiss. (2016b) . Monthly and yearly precipitation: RhiresM and RhiresY.
  • Mishra, N. B., Crews, K. A., Neeti, N., Meyer, T., & Young, K. R. (2015). MODIS derived vegetation greenness trends in African savanna: Deconstructing and localizing the role of changing moisture availability, fire regime and anthropogenic impact. Remote Sensing of Environment, 169, 192–204. https://doi.org/10.1016/j.rse.2015.08.008
  • Muradyan, V., Tepanosyan, G., Asmaryan, S., Saghatelyan, A., & Dell’acqua, F. (2019). Relationships between NDVI and climatic factors in mountain ecosystems: A case study of Armenia. Remote Sensing Applications: Society & Environment, 14, 158–169. https://doi.org/10.1016/j.rsase.2019.03.004
  • Murthy, K., & Bagchi, S. (2018). Spatial patterns of long-term vegetation greening and browning are consistent across multiple scales: Implications for monitoring land degradation. Land Degradation & Development, 29(8), 2485–2495. https://doi.org/10.1002/ldr.3019
  • Nash, M. S., Wickham, J., Christensen, J., & Wade, T. (2017). Changes in landscape greenness and climatic factors over 25 years (1989–2013) in the USA. Remote Sensing, 9(3), 295. https://doi.org/10.3390/rs9030295
  • NCCS. (2018). CH2018 – climate scenarios for Switzerland, technical report (p. 271).
  • Noceto, P.-A., Hériché, M., Fromentin, J., Rossi, V., Sirca, S., Ranca, A., Kehrli, P., Armengol, J., Trouvelot, S., van Tuinen, D., Courty, P.-E., & Wipf, D. (2020). Les couverts végétaux. Un atout majeur pour réduire les intrants de synthèse et augmenter les services écosystémiques au vignoble. Revue Des Oenologues et Des Techniques Vitivinicoles et Oenologiques, 175, 14. https://hal.inrae.fr/hal-02941354
  • Novillo, C. J., Arrogante-Funes, P., & Romero-Calcerrada, R. (2019). Recent NDVI trends in Mainland Spain: Land-cover and phytoclimatic-type implications. ISPRS International Journal of Geo-Information, 8(1), 43. Article 1. https://doi.org/10.3390/ijgi8010043
  • Pettorelli, N., Vik, J. O., Mysterud, A., Gaillard, J.-M., Tucker, C. J., & Stenseth, N. C. (2005). Using the satellite-derived NDVI to assess ecological responses to environmental change. Trends in Ecology & Evolution, 20(9), 503–510. https://doi.org/10.1016/j.tree.2005.05.011
  • Piao, S., Fang, J., Zhou, L., Ciais, P., & Zhu, B. (2006). Variations in satellite-derived phenology in China’s temperate vegetation. Global Change Biology, 12(4), 672–685. https://doi.org/10.1111/j.1365-2486.2006.01123.x
  • Piao, S., Yin, G., Tan, J., Cheng, L., Huang, M., Li, Y., Liu, R., Mao, J., Myneni, R. B., Peng, S., Poulter, B., Shi, X., Xiao, Z., Zeng, N., Zeng, Z., & Wang, Y. (2015). Detection and attribution of vegetation greening trend in China over the last 30 years. Global Change Biology, 21(4), 1601–1609. https://doi.org/10.1111/gcb.12795
  • Piedallu, C., Chéret, V., Denux, J. P., Perez, V., Azcona, J. S., Seynave, I., & Gégout, J. C. (2019). Soil and climate differently impact NDVI patterns according to the season and the stand type. Science of the Total Environment, 651, 2874–2885. https://doi.org/10.1016/j.scitotenv.2018.10.052
  • Poussin, C., Massot, A., Ginzler, C., Weber, D., Chatenoux, B., Lacroix, P., Piller, T., Nguyen, L., & Giuliani, G. (2021). Drying conditions in Switzerland – indication from a 35-year Landsat time-series analysis of vegetation water content estimates to support SDGs. Big Earth Data, 1–31. https://doi.org/10.1080/20964471.2021.1974681
  • Poussin, C., Timoner, P., Chatenoux, B., Giuliani, G., & Peduzzi, P. (2023). Improved Landsat-based snow cover mapping accuracy using a spatiotemporal NDSI and generalized linear mixed model. Science of Remote Sensing, 7, 100078. https://doi.org/10.1016/j.srs.2023.100078
  • Redowan, M., & Kanan, A. H. (2013). A study on maximization of land use with associated crops other than tea and management. International Journal of Ecology & Development, 25(2), 57–70.
  • Rumpf, S. B., Gravey, M., Brönnimann, O., Luoto, M., Cianfrani, C., Mariethoz, G., & Guisan, A. (2022). From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science, 376(6597), 1119–1122. https://doi.org/10.1126/science.abn6697
  • Southworth, J., & Muir, C. (2021). Specialty grand challenge: Remote sensing time series analysis. Frontiers in Remote Sensing, 2. https://doi.org/10.3389/frsen.2021.770431
  • Sudmanns, M., Augustin, H., Killough, B., Giuliani, G., Tiede, D., Leith, A., Yuan, F., & Lewis, A. (2022). Think global, cube local: An Earth observation data Cube’s contribution to the Digital Earth vision. Big Earth Data, 1–29. https://doi.org/10.1080/20964471.2022.2099236
  • Sudmanns, M., Augustin, H., van der Meer, L., Baraldi, A., & Tiede, D. (2021). The Austrian semantic EO data Cube infrastructure. Remote Sensing, 13(23), 4807. Article 23. https://doi.org/10.3390/rs13234807
  • Swiss Federal Statistical Office. (2001) . The changing face of land use: Land use statistics of Switzerland. SFO.
  • Swiss Federal Statistical Office. (2013) . Land use in Switzerland—results of the Swiss land use statistics. SFO.
  • Thomas, I. N., & Giuliani, G. (2023). Exploring Switzerland’s land cover change dynamics using a national statistical survey. Land, 12(7), 1386. Article 7. https://doi.org/10.3390/land12071386
  • Thornton, J. M., Palazzi, E., Pepin, N. C., Cristofanelli, P., Essery, R., Kotlarski, S., Giuliani, G., Guigoz, Y., Kulonen, A., Pritchard, D., Li, X., Fowler, H. J., Randin, C. F., Shahgedanova, M., Steinbacher, M., Zebisch, M., & Adler, C. (2021). Toward a definition of essential mountain climate variables. One Earth, 4(6), 805–827. https://doi.org/10.1016/j.oneear.2021.05.005
  • Truckenbrodt, J., Freemantle, T., Williams, C., Jones, T., Small, D., Dubois, C., Thiel, C., Rossi, C., Syriou, A., & Giuliani, G. (2019). Towards Sentinel-1 SAR Analysis-Ready Data: A best practices assessment on preparing backscatter Data for the Cube. Data, 4(3), 93. https://doi.org/10.3390/data4030093
  • Vittoz, P., Cherix, D., Gonseth, Y., Lubini, V., Maggini, R., Zbinden, N., & Zumbach, S. (2013). Climate change impacts on biodiversity in Switzerland: A review. Journal for Nature Conservation, 21(3), 154–162. https://doi.org/10.1016/j.jnc.2012.12.002
  • Wessels, K. J., van den Bergh, F., & Scholes, R. J. (2012). Limits to detectability of land degradation by trend analysis of vegetation index data. Remote Sensing of Environment, 125, 10–22. https://doi.org/10.1016/j.rse.2012.06.022
  • Wohlgemuth, T., & Kramer, K. (2015). Waldverjüngung und Totholz in Sturmflächen 10 Jahre nach Lothar und 20 Jahre nach Vivian Schweiz. Z. Forstwes, 166(3), 135–146. https://doi.org/10.3188/szf.2015.0135
  • Wulder, M. A., Ortlepp, S. M., White, J. C., & Maxwell, S. (2008). Evaluation of Landsat-7 SLC-off image products for forest change detection. Canadian Journal of Remote Sensing, 34(2), 93–99. https://doi.org/10.5589/m08-020
  • Wulder, M. A., Roy, D. P., Radeloff, V. C., Loveland, T. R., Anderson, M. C., Johnson, D. M., Healey, S., Zhu, Z., Scambos, T. A., Pahlevan, N., Hansen, M., Gorelick, N., Crawford, C. J., Masek, J. G., Hermosilla, T., White, J. C., Belward, A. S., Schaaf, C., Woodcock, C. E. … Cook, B. D. (2022). Fifty years of Landsat science and impacts. Remote Sensing of Environment, 280, 113195. https://doi.org/10.1016/j.rse.2022.113195
  • Wu, Y., Tang, G., Gu, H., Liu, Y., Yang, M., & Sun, L. (2019). The variation of vegetation greenness and underlying mechanisms in Guangdong province of China during 2001–2013 based on MODIS data. Science of the Total Environment, 653, 536–546. https://doi.org/10.1016/j.scitotenv.2018.10.380
  • Yang, Y., Wang, S., Bai, X., Tan, Q., Li, Q., Wu, L., Tian, S., Hu, Z., Li, C., & Deng, Y. (2019). Factors affecting long-term trends in global NDVI. Forests, 10(5), 372. https://doi.org/10.3390/f10050372
  • Zhou, M., Li, D., Liao, K., & Lu, D. (2023). Integration of Landsat time-series vegetation indices improves consistency of change detection. International Journal of Digital Earth, 16(1), 1276–1299. https://doi.org/10.1080/17538947.2023.2200040
  • Zhu, Z., Fu, Y., Woodcock, C. E., Olofsson, P., Vogelmann, J. E., Holden, C., Wang, M., Dai, S., & Yu, Y. (2016). Including land cover change in analysis of greenness trends using all available Landsat 5, 7, and 8 images: A case study from Guangzhou, China (2000–2014). Landsat 8 Science Results, 185, 243–257. https://doi.org/10.1016/j.rse.2016.03.036
  • Zhu, Z., Piao, S., Myneni, R. B., Huang, M., Zeng, Z., Canadell, J. G., Ciais, P., Sitch, S., Friedlingstein, P., Arneth, A., Cao, C., Cheng, L., Kato, E., Koven, C., Li, Y., Lian, X., Liu, Y., Liu, R., Mao, J. … Zeng, N. (2016). Greening of the Earth and its drivers. Nature Climate Change, 6(8), 791–795. https://doi.org/10.1038/nclimate3004