1,153
Views
1
CrossRef citations to date
0
Altmetric
Data Article

A dataset of lake level changes in China between 2002 and 2023 using multi-altimeter data

ORCID Icon, ORCID Icon, &
Pages 166-188 | Received 01 Sep 2023, Accepted 09 Dec 2023, Published online: 03 Jan 2024

References

  • Birkett, C. M. (1998). Contribution of the TOPEX NASA radar altimeter to the global monitoring of large rivers and wetlands. Water Resources Research, 34(5), 1223–1239. https://doi.org/10.1029/98WR00124
  • Birkett, C. M., Ricko, M., Beckley, B. D., Yang, X., & Tetrault, R. L. (2017). G-REALM: A lake/reservoir monitoring tool for drought monitoring and water resources management. In AGU Fall Meeting Abstracts. https://agu.confex.com/agu/fm18/meetingapp.cgi/Paper/374138
  • Chen, J. M., & Liao, J. J. (2020). Monitoring lake level changes in China using multi-altimeter data (2016–2019). Canadian Journal of Fisheries and Aquatic Sciences, 590, 590. https://doi.org/10.1016/j.jhydrol.2020.125544
  • Chen, J. M., Liao, J. J., & Wang, C. (2021). Improved lake level estimation from radar altimeter using an automatic multiscale-based peak detection retracker. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 14, 1246–1259. https://doi.org/10.1109/JSTARS.2020.3035686
  • Cooley, S. W., Ryan, J. C., & Smith, L. C. (2021). Human alteration of global surface water storage variability. Nature, 591(7848), 78–81. https://doi.org/10.1038/s41586-021-03262-3
  • Cretaux, J. F., Abarca-Del-Rio, R., Berge-Nguyen, M., Arsen, A., Drolon, V., Clos, G., & Maisongrande, P. (2016). Lake volume monitoring from space. Surveys in Geophysics, 37(2), 269–305. https://doi.org/10.1007/s10712-016-9362-6
  • Crétaux, J. F., Jelinski, W., Calmant, S., Kouraev, A., Vuglinski, V., Bergé-Nguyen, M., Gennero, M. C., Nino, F., Del Rio, R. A., Cazenave, A., & Maisongrande, P. (2011). SOLS: A lake database to monitor in the near real time water level and storage variations from remote sensing data. Advances in Space Research, 47(9), 1497–1507. https://doi.org/10.1016/j.asr.2011.01.004
  • Frappart, F., Calmant, S., Cauhope, M., Seyler, F., & Cazenave, A. (2006). Preliminary results of ENVISAT RA-2-derived water levels validation over the Amazon basin. Remote Sensing of Environment, 100(2), 252–264. https://doi.org/10.1016/j.rse.2005.10.027
  • Gao, L., Liao, J. J., & Shen, G. Z. (2013). Monitoring lake-level changes in the Qinghai–Tibetan Plateau using radar altimeter data (2002–2012). Journal of Applied Remote Sensing, 7(1), 073470. https://doi.org/10.1117/1.JRS.7.073470
  • Gao, Q., Makhoul, E., Escorihuela, M. J., Zribi, M., Segui, P. Q., Garcia, P., & Roca, M. (2019). Analysis of retrackers’ performances and water level retrieval over the Ebro River basin using sentinel-3. Remote Sensing, 11(6), 11. https://doi.org/10.3390/rs11060718
  • Gleick, P. H. (2003). Global freshwater resources: Soft-path solutions for the 21st century. Science, 302(5650), 1524–1528. https://doi.org/10.1126/science.1089967
  • Hwang, C., Cheng, Y. S., Yang, W. H., Zhang, G. Q., Huang, Y. R., Shen, W. B., & Pan, Y. J. (2019). Lake level changes in the Tibetan Plateau from Cryosat-2, SARAL, ICESat, and Jason-2 altimeters. Terrestrial Atmospheric and Oceanic Sciences, 30(1), 33–50. https://doi.org/10.3319/TAO.2018.07.09.01
  • Jain, M., Andersen, O. B., Dall, J., & Stenseng, L. (2015). Sea surface height determination in the Arctic using cryosat-2 SAR data from primary peak empirical retrackers. Advances in Space Research, 55(1), 40–50. https://doi.org/10.1016/j.asr.2014.09.006
  • Jiang, L. G., Nielsen, K., Andersen, O. B., & Bauer-Gottwein, P. (2017). Monitoring recent lake level variations on the Tibetan Plateau using CryoSat-2 SARIn mode data. Canadian Journal of Fisheries and Aquatic Sciences, 544, 109–124. https://doi.org/10.1016/j.jhydrol.2016.11.024
  • Jiang, L. G., Nielsen, K., Dinardo, S., Andersen, O. B., & Bauer-Gottwein, P. (2020). Evaluation of sentinel-3 SRAL SAR altimetry over Chinese rivers. Remote Sensing of Environment, 237, 237. https://doi.org/10.1016/j.rse.2019.111546
  • Liao, J. J., Gao, L., & Wang, X. M. (2014). Numerical simulation and Forecasting of water level for Qinghai lake using multi-altimeter data between 2002 and 2012. IEEE Journal of Selected Topics in Applied Earth Observations & Remote Sensing, 7(2), 609–622. https://doi.org/10.1109/JSTARS.2013.2291516
  • Li, P., Li, H., Chen, F., & Cai, X. B. (2020). Monitoring long-term lake level variations in middle and lower Yangtze basin over 2002–2017 through integration of multiple satellite altimetry datasets. Remote Sensing, 12(9), 1448. https://doi.org/10.3390/rs12091448
  • Li, X. D., Long, D., Huang, Q., Han, P. F., Zhao, F. Y., & Wada, Y. (2019). High-temporal-resolution water level and storage change data sets for lakes on the Tibetan Plateau during 2000–2017 using multiple altimetric missions and Landsat-derived lake shoreline positions. Earth System Science Data, 11(4), 1603–1627. https://doi.org/10.5194/essd-11-1603-2019
  • Ma, R. H., Yang, G. S., Duan, H. T., Jiang, J. H., Wang, S. M., Feng, X. Z., Li, A. N., Kong, F. X., Xue, B., Wu, J. L., & Li, S. J. (2011). China’s lakes at present: Number, area and spatial distribution. Science China-Earth Sciences, 54(2), 283–289. https://doi.org/10.1007/s11430-010-4052-6
  • Pavlis, N. K., Holmes, S. A., Kenyon, S. C., & Factor, J. K. (2012). The development and evaluation of the earth gravitational model 2008 (EGM2008). Journal of Geophysical Research-Solid Earth, 117(B4), 117. https://doi.org/10.1029/2011JB008916
  • Pekel, J. F., Cottam, A., Gorelick, N., & Belward, A. S. (2016). High-resolution mapping of global surface water and its long-term changes. Nature, 540(7633), 418–422. https://doi.org/10.1038/nature20584
  • Pi, X. H., Luo, Q. Q., Feng, L., Xu, Y., Tang, J., Liang, X. Y., Ma, E. Z., Cheng, R., Fensholt, R., Brandt, M., Cai, X. B., Gibson, L., Liu, J. G., Zheng, C. M., Li, W. F., & Bryan, B. A. (2022). Mapping global lake dynamics reveals the emerging roles of small lakes. Nature Communications, 13(1). https://doi.org/10.1038/s41467-022-33239-3
  • Schwatke, C., Dettmering, D., Bosch, W., & Seitz, F. (2015). DAHITI – an innovative approach for estimating water level time series over inland waters using multi-mission satellite altimetry. Hydrology and Earth System Sciences, 19(10), 4345–4364. https://doi.org/10.5194/hess-19-4345-2015
  • Shu, S., Liu, H. X., Beck, R. A., Frappart, F., Korhonen, J., Xu, M., Yang, B., Hinkel, K. M., Huang, Y., & Yu, B. L. (2020). Analysis of sentinel-3 SAR altimetry waveform retracking algorithms for deriving temporally consistent water levels over ice-covered lakes. Remote Sensing of Environment, 239, 239. https://doi.org/10.1016/j.rse.2020.111643
  • Song, C. Q., Ye, Q. H., Sheng, Y. W., & Gong, T. L. (2015). Combined ICESat and CryoSat-2 altimetry for accessing water level dynamics of Tibetan lakes over 2003–2014. Water, 7(12), 4685–4700. https://doi.org/10.3390/w7094685
  • Tourian, M. J., Elmi, O., Shafaghi, Y., Behnia, S., Saemian, P., Schlesinger, R., & Sneeuw, N. (2022). HydroSat: Geometric quantities of the global water cycle from geodetic satellites. Earth System Science Data, 14(5), 2463–2486. https://doi.org/10.5194/essd-14-2463-2022
  • Yamazaki, D., Ikeshima, D., Sosa, J., Bates, P. D., Allen, G. H., & Pavelsky, T. M. (2019). MERIT hydro: A high-resolution global hydrography map based on latest topography dataset. Water Resources Research, 55(6), 5053–5073. https://doi.org/10.1029/2019WR024873
  • Zhang, G. Q., Yao, T. D., Xie, H. J., Yang, K., Zhu, L. P., Shum, C. K., Bolch, T., Yi, S., Allen, S., Jiang, L. G., Chen, W. F., & Ke, C. Q. (2020). Response of Tibetan Plateau lakes to climate change: Trends, patterns, and mechanisms. Earth Science Review, 208, 103269. https://doi.org/10.1016/j.earscirev.2020.103269
  • Zhu, J. Y., Song, C. Q., Wang, J. D., & Ke, L. H. (2020). China’s inland water dynamics: The significance of water body types. Proceedings of the National Academy of Sciences of the United States of America, 117(25), 13876–13878. https://doi.org/10.1073/pnas.2005584117