1,624
Views
0
CrossRef citations to date
0
Altmetric
Review article

Unraveling the interplay between unicellular parasites and bacterial biofilms: Implications for disease persistence and antibiotic resistance

ORCID Icon & ORCID Icon
Article: 2289775 | Received 26 Jul 2023, Accepted 27 Nov 2023, Published online: 06 Dec 2023

References

  • Sauer K, et al. The biofilm life cycle: expanding the conceptual model of biofilm formation. Nat Rev Microbiol. 2022;20(10):608–10.
  • Donlan RM. Biofilm formation: a clinically relevant microbiological process. Clin Infect Dis. 2001;33(8):1387–1392. doi: 10.1086/322972
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322. doi: 10.1126/science.284.5418.1318
  • Wagner EM, Pracser N, Thalguter S, et al. Identification of biofilm hotspots in a meat processing environment: detection of spoilage bacteria in multi-species biofilms. Int J Food Microbiol. 2020;328:108668. doi: 10.1016/j.ijfoodmicro.2020.108668
  • Padhi N, Mahapatra A, Bhatt M, et al. Study of biofilm in bacteria from water pipelines. J Clin Diagn Res: jCDR. 2015;9:DC09–11. doi: 10.7860/JCDR/2015/12415.5715
  • Kokilaramani S, Al-Ansari MM, Rajasekar A, et al. Microbial influenced corrosion of processing industry by re-circulating waste water and its control measures - a review. Chemosphere. 2021;265:129075. doi: 10.1016/j.chemosphere.2020.129075
  • Arun D, Vimala R, Devendranath Ramkumar K. Investigating the microbial-influenced corrosion of UNS S32750 stainless-steel base alloy and weld seams by biofilm-forming marine bacterium macrococcus equipercicus. Bioelectrochemistry. 2020;135:107546. doi: 10.1016/j.bioelechem.2020.107546
  • Bryers JD. Medical biofilms. Biotechnol Bioeng. 2008;100(1):1–18. doi: 10.1002/bit.21838
  • Dongari-Bagtzoglou A. Mucosal biofilms: challenges and future directions. Exp Rev Anti-Infective Ther. 2008;6(2):141–144. doi: 10.1586/14787210.6.2.141
  • Lila ASA, Rajab AAH, Abdallah MH, et al. Biofilm lifestyle in recurrent urinary tract infections. Life. 2023;13(1):148.
  • Boisvert AA, Cheng MP, Sheppard DC, et al. Microbial biofilms in pulmonary and critical care diseases. Ann Am Thoracic Soc. 2016;13(9):1615–1623.
  • Francolini I, Donelli G. Prevention and control of biofilm-based medical-device-related infections. FEMS Immunol Med Microbiol. 2010;59(3):227–238. doi: 10.1111/j.1574-695X.2010.00665.x
  • Perry EK, Tan MW. Bacterial biofilms in the human body: prevalence and impacts on health and disease. Front Cell Infect Microbiol. 2023;13:1237164. doi: 10.3389/fcimb.2023.1237164
  • Tytgat HLP, Nobrega FL, van der Oost J, et al. Bowel biofilms: tipping points between a healthy and compromised gut? Trends Microbiol. 2019;27(1):17–25. doi: 10.1016/j.tim.2018.08.009
  • Swidsinski A, Mendling W, Loening-Baucke V, et al. Adherent biofilms in bacterial vaginosis. Obstet & Gynecol. 2005;106(5, Part 1):1013–1023.
  • Bollinger RR, Barbas AS, Bush EL, et al. Biofilms in the normal human large bowel: fact rather than fiction. Gut. 2007;56(10):1481–1482.
  • Conway T, Cohen PS, Conway T, et al. Commensal and pathogenic Escherichia coli metabolism in the gut. Microbiol Spectr. 2015;3(3). doi: 10.1128/microbiolspec.MBP-0006-2014
  • Banuls AL, Thomas F, Renaud F. Of parasites and men. Infect Genet Evol. 2013;20:61–70. doi: 10.1016/j.meegid.2013.08.005
  • Barnes AN, Davaasuren A, Baasandagva U, et al. A systematic review of zoonotic enteric parasitic diseases among nomadic and pastoral people. PLoS One. 2017;12(11):e0188809. doi: 10.1371/journal.pone.0188809
  • Pulavarty A, Egan A, Karpinska A, et al. Plant parasitic nematodes: a review on their behaviour, host interaction, management approaches and their occurrence in two sites in the Republic of Ireland. Plants. 2021;10(11):2352. doi: 10.3390/plants10112352
  • Koh W, Clode PL, Monis P, et al. Multiplication of the waterborne pathogen cryptosporidium parvum in an aquatic biofilm system. Parasites Vectors. 2013;6(1):270. doi: 10.1186/1756-3305-6-270
  • Khan NA. Acanthamoeba: biology and increasing importance in human health. FEMS Microbiol Rev. 2006;30(4):564–595. doi: 10.1111/j.1574-6976.2006.00023.x
  • Hasby Saad MA, Khalil HSM. Biofilm testing of microbiota: an essential step during corneal scrap examination in Egyptian acanthamoebic keratitis cases. Parasitol Int. 2018;67(5):556–564. doi: 10.1016/j.parint.2018.05.001
  • Pinto LF, Andriolo BNG, Hofling-Lima AL, et al. The role of Acanthamoeba spp. In biofilm communities: a systematic review. Parasitol Res. 2021;120(8):2717–2729. doi: 10.1007/s00436-021-07240-6
  • Muhammad MH, Idris AL, Fan X, et al. Beyond risk: bacterial biofilms and their regulating approaches. Front Microbiol. 2020;11:928. doi: 10.3389/fmicb.2020.00928
  • Quan K, Hou J, Zhang Z, et al. Water in bacterial biofilms: pores and channels, storage and transport functions. Crit Rev Microbiol. 2022;48(3):283–302. :
  • Yin W, Wang Y, Liu L, et al. Biofilms: the microbial “protective clothing” in extreme environments. Int J Mol Sci. 2019;20(14):3423.
  • Bercu TE, Petri WA, Behm JW. Amebic colitis: new insights into pathogenesis and treatment. Curr Gastroenterol Rep. 2007;9(5):429–433. doi: 10.1007/s11894-007-0054-8
  • Parry JD. Protozoan grazing of freshwater biofilms. Adv Appl Microbiol. 2004;54:167–196. doi: 10.1016/S0065-2164(04)54007-8
  • Martin KH, Borlee GI, Wheat WH, et al. Busting biofilms: free-living amoebae disrupt preformed methicillin-resistant Staphylococcus aureus (MRSA) and mycobacterium bovis biofilms. Microbiology. 2020;166(8):695–706.
  • Anderson IJ, Watkins RF, Samuelson J, et al. Gene discovery in the Acanthamoeba castellanii genome. Protist. 2005;156(2):203–214.
  • Hong Y, Kang J-M, Joo S-Y, et al. Molecular and biochemical properties of a cysteine protease of Acanthamoeba castellanii. Korean J Parasitol. 2018;56(5):409–418.
  • Wang Z, Wu D, Tachibana H, et al. Identification and biochemical characterisation of Acanthamoeba castellanii cysteine protease 3. Parasites Vectors. 2020;13(1):592.
  • Zanditenas E, Trebicz-Geffen M, Kolli D, et al. Digestive exophagy of biofilms by intestinal amoeba and its impact on stress tolerance and cytotoxicity. NPJ Biofilms Microbiomes. 2023;9(1):77.
  • Stanley SL Jr., Reed SL. VI. Entamoeba histolytica : parasite-host interactions. Am J Physiol Gastrointest Liver Physiol. 2001;280(6):G1049–1054. doi: 10.1152/ajpgi.2001.280.6.G1049
  • Zhang Z, Wang L, Seydel KB, et al. Entamoeba histolytica cysteine proteinases with interleukin-1 beta converting enzyme (ICE) activity cause intestinal inflammation and tissue damage in amoebiasis. Mol Microbiol. 2000;37(3):542–548.
  • Stanley SL Jr. Amoebiasis. Lancet. 2003;361(9362):1025–1034. S0140-6736(03)12830-9 [pii]. doi: 10.1016/S0140-6736(03)12830-9
  • Iqbal J, Siddiqui R, Khan NA. Acanthamoeba and bacteria produce antimicrobials to target their counterpart. Parasites Vectors. 2014;7(1):56. doi: 10.1186/1756-3305-7-56
  • Kubota H, Senda S, Nomura N, et al. Biofilm formation by lactic acid bacteria and resistance to environmental stress. J Biosci Bioeng. 2008;106(4):381–386.
  • Redman WK, Welch GS, Rumbaugh KP. Differential efficacy of glycoside hydrolases to disperse biofilms. Front Cell Infect Microbiol. 2020;10:379. doi: 10.3389/fcimb.2020.00379
  • Ramakrishnan R, Singh AK, Singh S, et al. Enzymatic dispersion of biofilms: an emerging biocatalytic avenue to combat biofilm-mediated microbial infections. J Biol Chem. 2022;298(9):102352.
  • Snarr BD, Baker P, Bamford NC, et al. Microbial glycoside hydrolases as antibiofilm agents with cross-kingdom activity. Proceedings of the National Academy of Sciences of the United States of America. 2017;114:7124–7129. doi: 10.1073/pnas.1702798114
  • Lahiri D, Nag M, Sarkar T, et al. Antibiofilm activity of α-amylase from Bacillus subtilis and prediction of the optimized conditions for biofilm removal by response surface methodology (RSM) and artificial neural network (ANN). Appl Biochem Biotechnol. 2021;193(6):1853–1872. doi: 10.1007/s12010-021-03509-9
  • Trizna E, Bogachev MI, Kayumov A. Degrading of the Pseudomonas Aeruginosa Biofilm by Extracellular Levanase SacC from Bacillus subtilis. Bionanoscience. 2019;9(1):48–52. doi: 10.1007/s12668-018-0581-9
  • Kalpana BJ, Aarthy S, Pandian SK. Antibiofilm activity of α-amylase from Bacillus subtilis S8-18 against biofilm forming human bacterial Pathogens. Appl Biochem Biotechnol. 2012;167(6):1778–1794. doi: 10.1007/s12010-011-9526-2
  • Wong-Madden ST, Landry D. Purification and characterization of novel glycosidases from the bacterial genus xanthomonas. Glycobiology. 1995;5(1):19–28. doi: 10.1093/glycob/5.1.19
  • Craigen B, Dashiff A, Kadouri DE. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J. 2011;5(1):21–31. doi: 10.2174/1874285801105010021
  • Pan I, Khursigara CM. Exploration for thermostable β-amylase of a Bacillus sp. Isolated from compost soil to degrade bacterial biofilm. Microbiol Spectr. 2021;9(2):e0064721. doi: 10.1128/Spectrum.00647-21
  • Ellis JR, Bull JJ, Rowley PA. Fungal glycoside hydrolases display unique specificities for polysaccharides and Staphylococcus aureus biofilms. Microorganisms. 2023;11(2):293. doi: 10.3390/microorganisms11020293
  • Donelli G, Francolini I, Romoli D, et al. Synergistic activity of dispersin B and cefamandole nafate in inhibition of staphylococcal biofilm growth on polyurethanes. Antimicrob Agents Chemother. 2007;51(8):2733–2740.
  • Thibeaux R, Weber C, Hon C-C, et al. Identification of the virulence landscape essential for Entamoeba histolytica invasion of the human colon. PLOS Pathogens. 2013;9(12):e1003824. :
  • Williams AG, Withers SE, Coleman GS. Glycoside Hydrolases of Rumen Bacteria and Protozoa. Curr Microbiol. 1984;10(5):287–293. doi: 10.1007/Bf01577143
  • Matthiesen J, Bär A-K, Bartels A-K, et al. Overexpression of specific cysteine peptidases confers pathogenicity to a nonpathogenic Entamoeba histolytica clone. MBio. 2013;4(2). doi: 10.1128/mBio.00072-13
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nature Rev Microbiol. 2004;2(2):95–108. doi: 10.1038/nrmicro821
  • Leung AKC, Leung AAM, Wong AHC, et al. Giardiasis: An Overview. Recent Pat Inflamm Allergy Drug Discov. 2019;13(2):134–143. doi: 10.2174/1872213X13666190618124901
  • Beatty JK, Akierman SV, Motta J-P, et al. Giardia duodenalis induces pathogenic dysbiosis of human intestinal microbiota biofilms. Int J Parasitol. 2017;47(6):311–326.
  • Suzuki KM, Hayashi N, Hosoya N, et al. Secretion of tetrain, a tetrahymena cysteine protease, as a mature enzyme and its identification as a member of the cathepsin L subfamily. Eur J Biochem. 1998;254(1):6–13.
  • Secchi E, Savorana G, Vitale A, et al. The structural role of bacterial eDNA in the formation of biofilm streamers. Proceedings of the National Academy of Sciences of the United States of America 2022;119: e2113723119. doi: 10.1073/pnas.2113723119
  • Ibanez de Aldecoa AL, Zafra O, Gonzalez-Pastor JE. Mechanisms and regulation of extracellular DNA release and its biological roles in microbial communities. Front Microbiol. 2017;8:1390. doi: 10.3389/fmicb.2017.01390
  • Allocati N, Masulli M, Di Ilio C, et al. Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis. 2015;6(1):e1609.
  • Di Martino P. Extracellular polymeric substances, a key element in understanding biofilm phenotype. AIMS microbiol. 2018;4(2):274–288. doi: 10.3934/microbiol.2018.2.274
  • Sharma K, Pagedar Singh A. Antibiofilm effect of DNase against single and mixed species biofilm. Foods. 2018;7(3):42. doi: 10.3390/foods7030042
  • Kaplan JB, LoVetri K, Cardona ST, et al. Recombinant human DNase I decreases biofilm and increases antimicrobial susceptibility in staphylococci. J Antibiot. 2012;65(2):73–77.
  • Baelo A, Levato R, Julián E, et al. Disassembling bacterial extracellular matrix with DNase-coated nanoparticles to enhance antibiotic delivery in biofilm infections. J Control Release. 2015;209:150–158. doi: 10.1016/j.jconrel.2015.04.028
  • Martins M, Henriques M, Lopez-Ribot JL, et al. Addition of DNase improves the in vitro activity of antifungal drugs against Candida albicans biofilms. Mycoses. 2012;55(1):80–85. doi: 10.1111/j.1439-0507.2011.02047.x
  • Iqbal J, Panjwani S, Siddiqui R, et al. Partial characterization of Acanthamoeba castellanii (T4 genotype) DNase activity. Parasitol Res. 2015;114(2):457–463. doi: 10.1007/s00436-014-4203-3
  • Aslan E, Arslanyolu M. Identification of neutral and acidic deoxyribonuclease activities in Tetrahymena thermophila life stages. Eur J Protistol. 2015;51(2):173–185. doi: 10.1016/j.ejop.2015.02.004
  • Avila EE, Salaiza N, Pulido J, et al. Entamoeba histolytica Trophozoites and lipopeptidophosphoglycan trigger human neutrophil extracellular traps. PLoS One. 2016;11(7):e0158979.
  • Ochsner UA, Koch AK, Fiechter A, et al. Isolation and characterization of a regulatory gene affecting rhamnolipid biosurfactant synthesis in Pseudomonas aeruginosa. J Bacteriol. 1994;176(7):2044–2054.
  • Flammersfeld A, Lang C, Flieger A, et al. Phospholipases during membrane dynamics in malaria parasites. Int J Med Microbiol. 2018;308(1):129–141. doi: 10.1016/j.ijmm.2017.09.015
  • Asad M, Yamaryo-Botté Y, Hossain ME, et al. An essential vesicular-trafficking phospholipase mediates neutral lipid synthesis and contributes to hemozoin formation in Plasmodium falciparum. BMC Biol. 2021;19(1):159.
  • Monic SG, Lamy A, Thonnus M, et al. A novel lipase with dual localisation in trypanosoma brucei. Sci Rep. 2022;12(1):4766.
  • Castellanos-Castro S, Bolanos J, Orozco E. Lipids in Entamoeba histolytica: host-dependence and virulence factors. Front Cell Infect Microbiol. 2020;10:75. doi: 10.3389/fcimb.2020.00075
  • Prabhawathi V, Boobalan T, Sivakumar PM, et al. Antibiofilm properties of interfacially active lipase immobilized porous polycaprolactam prepared by LB technique. PLoS One. 2014;9(5):e96152. doi: 10.1371/journal.pone.0096152
  • Yassein AS, Hassan MM, Elamary RB. Prevalence of lipase producer Aspergillus niger in nuts and anti-biofilm efficacy of its crude lipase against some human pathogenic bacteria. Sci Rep. 2021;11(1):7981. doi: 10.1038/s41598-021-87079-0
  • Huws SA, McBain AJ, Gilbert P. Protozoan grazing and its impact upon population dynamics in biofilm communities. J Appl Microbiol. 2005;98(1):238–244. doi: 10.1111/j.1365-2672.2004.02449.x
  • Kanungo S, Azman AS, Ramamurthy T, et al. Cholera. Lancet. 2022;399(10333):1429–1440.
  • Liao C, Huang X, Wang Q, et al. Virulence Factors of Pseudomonas Aeruginosa and Antivirulence Strategies to Combat Its Drug Resistance. Front Cell Infect Microbiol. 2022;12:926758. doi: 10.3389/fcimb.2022.926758
  • Viasus D, Gaia V, Manzur-Barbur C, et al. Legionnaires’ disease: update on diagnosis and treatment. Infect Dis Ther. 2022;11(3):973–986. doi: 10.1007/s40121-022-00635-7
  • Hoque MM, Espinoza-Vergara G, McDougald D. Protozoan predation as a driver of diversity and virulence in bacterial biofilms. FEMS Microbiol Rev. 2023;47(4). doi: 10.1093/femsre/fuad040
  • Mann S, Frasca K, Scherrer S, et al. A review of leishmaniasis: Current knowledge and future directions. Curr Trop Med Rep. 2021;8(2):121–132.
  • Jayasena Kaluarachchi TD, Campbell PM, Wickremasinghe R, et al. Distinct microbiome profiles and biofilms in Leishmania donovani-driven cutaneous leishmaniasis wounds. Sci Rep. 2021;11(1):23181.
  • Dumetre A, Aubert D, Puech P-H, et al. Interaction forces drive the environmental transmission of pathogenic protozoa. Appl environ microbiol. 2012;78(4):905–912.
  • Thomas V, Bouchez T, Nicolas V, et al. Amoebae in domestic water systems: resistance to disinfection treatments and implication in legionella persistence. J Appl Microbiol. 2004;97(5):950–963.
  • Rodriguez-Zaragoza S. Ecology of free-living amoebae. Crit Rev Microbiol. 1994;20(3):225–241. doi: 10.3109/10408419409114556
  • Valster RM, Wullings BA, Bakker G, et al. Free-living protozoa in two unchlorinated drinking water supplies, identified by phylogenic analysis of 18S rRNA gene sequences. Appl environ microbiol. 2009;75(14):4736–4746.
  • Guimaraes AJ, Gomes KX, Cortines JR, et al. Acanthamoeba spp. As a universal host for pathogenic microorganisms: one bridge from environment to host virulence. Microbiol Res. 2016;193:30–38. doi: 10.1016/j.micres.2016.08.001
  • Shaheen M, Scott C, Ashbolt NJ. Long-term persistence of infectious legionella with free-living amoebae in drinking water biofilms. Int J Hyg Environ Health. 2019;222(4):678–686. doi: 10.1016/j.ijheh.2019.04.007
  • Moser C, Jensen PØ, Thomsen K, et al. Immune Responses to Pseudomonas aeruginosa Biofilm Infections. Front Immunol. 2021;12:625597. doi: 10.3389/fimmu.2021.625597
  • Gonzalez JF, Hahn MM, Gunn JS. Chronic biofilm-based infections: skewing of the immune response. Pathog Dis. 2018;76(3). doi: 10.1093/femspd/fty023
  • Angelini LL, dos Santos RAC, Fox G, et al. Pulcherrimin protects Bacillus subtilis against oxidative stress during biofilm development. NPJ Biofilms Microbiomes. 2023;9(1):50.
  • Andre LJ, Pieri F, Abed L. Metronidazole, a diffusible amebicide and contact amebicide, in the treatment of amebiasis. Demonstration of the presence of its main metabolite in feces. Med Trop (Mars). 1968;28(4):483–487.
  • Li T, Zhang Z, Wang F, et al. Antimicrobial susceptibility testing of metronidazole and Clindamycin against Gardnerella vaginalis in planktonic and biofilm formation. The Canadian Journal Of Infectious Diseases & Medical Microbiology = Journal Canadien des Maladies Infectieuses Et de la Microbiologie Medicale. 2020;2020:1361825. doi: 10.1155/2020/1361825
  • Wright TL, Ellen RP, Lacroix JM, et al. Effects of metronidazole on porphyromonas gingivalis biofilms. J Periodontal Res. 1997;32(5):473–477. doi: 10.1111/j.1600-0765.1997.tb00560.x
  • Salahuddin K, Janet EH. Established Gardnerella biofilms can survive metronidazole treatment by reducing metabolic activity. bioRxiv. 2021. 2021. 2009.2006.459156. doi: 10.1101/2021.09.06.459156
  • Fanning S, Mitchell AP, Heitman J. Fungal biofilms. PLOS Pathogens. 2012;8(4):e1002585. doi: 10.1371/journal.ppat.1002585
  • Casadevall A, Fu MS, Guimaraes AJ, et al. The ‘Amoeboid Predator-Fungal Animal Virulence’ Hypothesis. Journal Of Fungi. 2019;5(1):10.
  • Hubert F, Rodier MH, Minoza A, et al. Free-living amoebae promote Candida auris survival and proliferation in water. Lett Appl Microbiol. 2021;72(1):82–89.
  • Maisonneuve E, Cateau E, Kaaki S, et al. Vermamoeba vermiformis-Aspergillus fumigatus relationships and comparison with other phagocytic cells. Parasitol Res. 2016;115(11):4097–4105. doi: 10.1007/s00436-016-5182-3
  • Koller B, Schramm C, Siebert S, et al. Dictyostelium discoideum as a novel host system to study the interaction between phagocytes and yeasts. Front Microbiol. 2016;7:1665. doi: 10.3389/fmicb.2016.01665