1,869
Views
0
CrossRef citations to date
0
Altmetric
Review

Dry eye disease caused by viral infection: Past, present and future

, , , , , , , , , , , , , & show all
Article: 2289779 | Received 11 Aug 2023, Accepted 27 Nov 2023, Published online: 04 Dec 2023

References

  • Tsubota K, Pflugfelder SC, Liu Z, et al. Defining dry eye from a clinical perspective. Int J Mol Sci. 2020;21(23):21.
  • Craig JP, Nichols KK, Akpek EK, et al. TFOS DEWS II definition and classification report. Ocul Surf. 2017;15(3):276–12.
  • Vehof J, Snieder H, Jansonius N, et al. Prevalence and risk factors of dry eye in 79,866 participants of the population-based lifelines cohort study in the Netherlands. Ocul Surf. 2021;19:83–93. doi: 10.1016/j.jtos.2020.04.005
  • Toda I. Dry eye after LASIK. Invest Ophthalmol Vis Sci. 2018;59(14):DES109–DES15. doi: 10.1167/iovs.17-23538
  • Chen Y, Chauhan SK, Lee HS, et al. Chronic dry eye disease is principally mediated by effector memory Th17 cells. Mucosal Immunol. 2014;7(1):38–45.
  • Schaumberg DA, Dana R, Buring JE, et al. Prevalence of dry eye disease among US men: estimates from the Physicians Health Studies. Arch Ophthalmol. 2009;127(6):763–8. doi: 10.1001/archophthalmol.2009.103
  • Li S, Tang L, Zhou J, et al. Sleep deprivation induces corneal epithelial progenitor cell over-expansion through disruption of redox homeostasis in the tear film. Stem Cell Rep. 2022;17(5):1105–1119.
  • Wolffsohn JS, Arita R, Chalmers R, et al. TFOS DEWS II diagnostic methodology report. Ocular Surf. 2017;15(3):539–574.
  • Geerling G, Tauber J, Baudouin C, et al. The international workshop on meibomian gland dysfunction: report of the subcommittee on management and treatment of meibomian gland dysfunction. Invest Ophthalmol Vis Sci. 2011;52(4):2050–2064.
  • Baudouin C, Aragona P, Messmer EM, et al. Role of hyperosmolarity in the pathogenesis and management of dry eye disease: proceedings of the OCEAN group meeting. Ocul Surf. 2013;11(4):246–258.
  • McMonnies CW. Aqueous deficiency is a contributor to evaporation-related dry eye disease. Eye Vis (Lond). 2020;7(1):6. doi: 10.1186/s40662-019-0172-z
  • Chhadva P, Goldhardt R, Galor A. Meibomian gland disease: the role of gland dysfunction in dry eye disease. Ophthalmol. 2017;124(11):S20–S6. doi: 10.1016/j.ophtha.2017.05.031
  • Song K, Li S. The role of ubiquitination in NF-κB signaling during virus infection. Viruses. 2021;13(2):145. doi: 10.3390/v13020145
  • Schiller JT, Lowy DR. An introduction to virus infections and human cancer. Recent Results Cancer Res. 2021;217:1–11.
  • Sidiq Z, Hanif M, Dwivedi KK, et al. Benefits and limitations of serological assays in COVID-19 infection. Indian J Tuberc. 2020;67(4):S163–S6. doi: 10.1016/j.ijtb.2020.07.034
  • Felsenstein S, Herbert JA, McNamara PS, et al. COVID-19: immunology and treatment options. Clin Immunol. 2020;215:108448. doi: 10.1016/j.clim.2020.108448
  • Tan M, Liu Y, Zhou R, et al. Immunopathological characteristics of coronavirus disease 2019 cases in Guangzhou, China. Immunology. 2020;160(3):261–268.
  • Qin C, Zhou L, Hu Z, et al. Dysregulation of immune response in patients with coronavirus 2019 (COVID-19) in Wuhan, China. Clin Infect Dis. 2020;71(15):762–768.
  • Jayaweera M, Perera H, Gunawardana B, et al. Transmission of COVID-19 virus by droplets and aerosols: a critical review on the unresolved dichotomy. Environ Res. 2020;188:109819. doi: 10.1016/j.envres.2020.109819
  • Boccardo L. Self-reported symptoms of mask-associated dry eye: a survey study of 3,605 people. Cont Lens Anterior Eye. 2022;45(2):101408. doi: 10.1016/j.clae.2021.01.003
  • Rouen PA, White ML. Dry eye disease: prevalence, assessment, and management. Home healthcare now. Home Healthc Now. 2018;36(2):74–83. doi: 10.1097/NHH.0000000000000652
  • Krolo I, Blazeka M, Merdzo I, et al. Mask-associated dry eye during COVID-19 pandemic-How face masks contribute to dry eye disease symptoms. Med Arch. 2021;75(2):144–148.
  • Fan Q, Liang M, Kong W, et al. Wearing face masks and possibility for dry eye during the COVID-19 pandemic. Sci Rep. 2022;12(1):6214.
  • Meyer J, McDowell C, Lansing J, et al. Changes in physical activity and sedentary behavior in response to COVID-19 and their associations with Mental Health in 3052 US adults. Int J Environ Res Public Health. 2020;17(18):17.
  • Xiang M, Zhang Z, Kuwahara K. Impact of COVID-19 pandemic on children and adolescents’ lifestyle behavior larger than expected. Prog Cardiovasc Dis. 2020;63(4):531–532. doi: 10.1016/j.pcad.2020.04.013
  • Saldanha IJ, Petris R, Makara M, et al. Impact of the COVID-19 pandemic on eye strain and dry eye symptoms. Ocul Surf. 2021;22:38–46. doi: 10.1016/j.jtos.2021.06.004
  • Xia J, Tong J, Liu M, et al. Evaluation of coronavirus in tears and conjunctival secretions of patients with SARS-CoV-2 infection. J Med Virol. 2020;92(6):589–594.
  • Bozkurt E, Ozates S, Muhafiz E, et al. Ocular surface and conjunctival cytology findings in patients with confirmed COVID-19. Eye Contact Lens. 2021;47(4):168–73. doi: 10.1097/ICL.0000000000000752
  • Inomata T, Kitazawa K, Kuno T, et al. Clinical and prodromal ocular symptoms in coronavirus disease: a systematic review and meta-analysis. Invest Ophthalmol Vis Sci. 2020;61(10):29.
  • Yan R, Zhang Y, Li Y, et al. Structural basis for the recognition of SARS-CoV-2 by full-length human ACE2. Science. 2020;367(6485):1444–1448.
  • Hoffmann M, Kleine-Weber H, Schroeder S, et al. SARS-CoV-2 cell entry Depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 2020;181(2):271–80 e8.
  • Collin J, Queen R, Zerti D, et al. Co-expression of SARS-CoV-2 entry genes in the superficial adult human conjunctival, limbal and corneal epithelium suggests an additional route of entry via the ocular surface. Ocul Surf. 2021;19:190–200. doi: 10.1016/j.jtos.2020.05.013
  • Kitazawa K, Deinhardt-Emmer S, Inomata T, et al. The transmission of SARS-CoV-2 infection on the ocular surface and prevention strategies. Cells. 2021;10(4):10. doi: 10.3390/cells10040796
  • Wang K, Chen W, Zhang Z, et al. CD147-spike protein is a novel route for SARS-CoV-2 infection to host cells. Signal Transduct Target Ther. 2020;5(1):283.
  • Maatta M, Tervahartiala T, Kaarniranta K, et al. Immunolocalization of EMMPRIN (CD147) in the human eye and detection of soluble form of EMMPRIN in ocular fluids. Curr Eye Res. 2006;31(11):917–924.
  • Li YP, Ma Y, Wang N, et al. Eyes on coronavirus. Stem Cell Res. 2021;51:102200. doi: 10.1016/j.scr.2021.102200
  • Shen Lee B, Toyos M, Karpecki P, et al. Selective pharmacologic therapies for dry eye disease treatment: efficacy, tolerability, and safety data review from preclinical studies and pivotal trials. Ophthalmol Ther. 2022;11(4):1333–1369. doi: 10.1007/s40123-022-00516-9
  • Eriksen AZ, Moller R, Makovoz B, et al. SARS-CoV-2 infects human adult donor eyes and hESC-derived ocular epithelium. Cell Stem Cell. 2021;28(7):1205–20 e7. doi: 10.1016/j.stem.2021.04.028
  • Gudowska-Sawczuk M, Mroczko B. The role of nuclear factor kappa B (NF-κB) in development and treatment of COVID-19: review. Int J Mol Sci. 2022;23(9):23. doi: 10.3390/ijms23095283
  • Valacchi G, Fortino V, Bocci V. The dual action of ozone on the skin. Br J Dermatol. 2005;153(6):1096–1100. doi: 10.1111/j.1365-2133.2005.06939.x
  • Rizzo S, Savastano MC, Bortolotti D, et al. COVID-19 ocular prophylaxis: the potential role of ozonated-oils in liposome eyedrop gel. Transl Vis Sci Technol. 2021;10(9):7.
  • Takeshita M, Ishida Y, Akamatsu E, et al. Proanthocyanidin from blueberry leaves suppresses expression of subgenomic hepatitis C virus RNA. J Biol Chem. 2009;284(32):21165–21176.
  • Kai H, Fuse T, Kunitake H, et al. Comparison of cultivars and seasonal variation in blueberry (Vaccinium Species) leaf extract on adult T-Cell leukemia cell line growth suppression. Medicines (Basel). 2014;1(1):3–11. doi: 10.3390/medicines1010003
  • Sugamoto K, Tanaka YL, Saito A, et al. Highly polymerized proanthocyanidins (PAC) components from blueberry leaf and stem significantly inhibit SARS-CoV-2 infection via inhibition of ACE2 and viral 3CLpro enzymes. Biochem Biophys Res Commun. 2022;615:56–62. doi: 10.1016/j.bbrc.2022.04.072
  • Lucas S, Nelson AM. HIV and the spectrum of human disease. J Pathol. 2015;235(2):229–241. doi: 10.1002/path.4449
  • Deeks SG, Overbaugh J, Phillips A, et al. HIV infection. Nat Rev Dis Primers. 2015;1(1):15035.
  • Giraldo DM, Hernandez JC, Urcuqui-Inchima S. HIV-1-derived single-stranded RNA acts as activator of human neutrophils. Immunol Res. 2016;64(5–6):1185–1194. doi: 10.1007/s12026-016-8876-9
  • Nizamuddin I, Koulen P, McArthur CP. Contribution of HIV infection, AIDS, and antiretroviral therapy to exocrine pathogenesis in salivary and lacrimal glands. Int J Mol Sci. 2018;19(9):2747. doi: 10.3390/ijms19092747
  • Kumari P, Kasturi N, Nagarajan G, et al. Spontaneous regression of angiolymphoid hyperplasia with eosinophilia of lacrimal gland in an HIV-positive patient. Indian J Ophthalmol. 2019;67(8):1334–1335.
  • Stern ME, Gao J, Siemasko KF, et al. The role of the lacrimal functional unit in the pathophysiology of dry eye. Exp Eye Res. 2004;78(3):409–416.
  • Nguyen BN, Chung AW, Lopez E, et al. Meibomian gland dropout is associated with immunodeficiency at HIV diagnosis: implications for dry eye disease. Ocul Surf. 2020;18(2):206–213.
  • Tran BN, Maass M, Musial G, et al. Topical application of cannabinoid-ligands ameliorates experimental dry-eye disease. Ocul Surf. 2022;23:131–139. doi: 10.1016/j.jtos.2021.12.008
  • Paul R, Ghosh AK, Nag A, et al. Study of retinal nerve fibre Layer thickness and visual contrast sensitivity in HIV positive individuals. J Clin Diagn Res. 2017;11:OC01–OC4. doi: 10.7860/JCDR/2017/24751.9956
  • Agrawal R, Balne PK, Veerappan A, et al. A distinct cytokines profile in tear film of dry eye disease (DED) patients with HIV infection. Cytokine. 2016;88:77–84. doi: 10.1016/j.cyto.2016.08.026
  • Venkatesh KK, Biswas J, Kumarasamy N. Impact of highly active antiretroviral therapy on ophthalmic manifestations in human immunodeficiency virus/acquired immune deficiency syndrome. Indian J Ophthalmol. 2008;56(5):391–393. doi: 10.4103/0301-4738.42415
  • Arora R, Sandhu N, Dokania P, et al. Ocular manifestations in patients of HIV(Human immunodeficiency virus) infection on combined anti-retroviral therapy (CART). Ocul Immunol Inflamm. 2022;30(6):1399–1407.
  • Gessain A, Cassar O. Epidemiological aspects and world distribution of HTLV-1 infection. Front Microbiol. 2012;3:388. doi: 10.3389/fmicb.2012.00388
  • Yoshida M. Multiple viral strategies of HTLV-1 for dysregulation of cell growth control. Annu Rev Immunol. 2001;19(1):475–96. doi: 10.1146/annurev.immunol.19.1.475
  • Eusebio-Ponce E, Anguita E, Paulino-Ramirez R, et al. HTLV-1 infection: an emerging risk. Pathogenesis, epidemiology, diagnosis and associated diseases. Rev Esp Quimioter. 2019;32(6):485–96. doi: 10.1073/pnas.77.12.7415
  • Kamoi K, Mochizuki M. HTLV infection and the eye. Curr Opin Ophthalmol. 2012;23(6):557–561. doi: 10.1097/ICU.0b013e328358b9ec
  • Lima CM, Santos S, Dourado A, et al. Association of sicca syndrome with proviral load and proinflammatory cytokines in HTLV-1 infection. J Immunol Res. 2016;2016:8402059. doi: 10.1155/2016/8402059
  • Castro-Lima-Vargens C, Grassi MFR, Boa-Sorte N, et al. Algorithm for dry eye disease diagnosis in individuals infected with human T-cell lymphotropic virus type 1. Arq Bras Oftalmol. 2017;80(6):369–72. doi: 10.5935/0004-2749.20170090
  • Vale DAD, Casseb J, de Oliveira ACP, et al. Prevalence of Sjögren’s syndrome in Brazilian patients infected with human T-cell lymphotropic virus. J Oral Pathol Med. 2017;46(7):543–8. doi: 10.1111/jop.12530
  • Buggage RR, Levy-Clarke GA, Smith JA. New corneal findings in human T-cell lymphotrophic virus type 1 infection. Am J Ophthalmol. 2001;131(3):309–313. doi: 10.1016/S0002-9394(00)00881-3
  • Merle H, Hage R, Jeannin S, et al. Retinal nerve fiber Layer thickness in human T-cell lymphotropic virus type 1 patients. Curr Eye Res. 2017;42(12):1644–1649.
  • Izumi Y, Kojima H, Koga Y, et al. Successful treatment of HTLV-1-related overlap syndrome using tacrolimus. Intern Med. 2011;50(17):1849–1853.
  • Kurozumi-Karube H, Kamoi K, Ando N, et al. In vitro Evaluation of the safety of adalimumab for the eye under HTLV-1 infection status: a preliminary study. Front Microbiol. 2020;11:522579. doi: 10.3389/fmicb.2020.522579
  • Uchida M, Kamoi K, Ando N, et al. Safety of infliximab for the eye under human T-Cell leukemia virus type 1 infectious conditions in vitro. Front Microbiol. 2019;10:2148. doi: 10.3389/fmicb.2019.02148
  • Jouanguy E, Beziat V, Mogensen TH, et al. Human inborn errors of immunity to herpes viruses. Curr Opin Immunol. 2020;62:106–122. doi: 10.1016/j.coi.2020.01.004
  • Siakallis G, Spandidos DA, Sourvinos G. Herpesviridae and novel inhibitors. Antivir Ther. 2009;14(8):1051–1064. doi: 10.3851/IMP1467
  • Houen G, Trier NH. Epstein-Barr Virus and Systemic Autoimmune Diseases. Front Immunol. 2020;11:587380. doi: 10.3389/fimmu.2020.587380
  • Jayasooriya S, de Silva TI, Njie-Jobe J, et al. Early virological and immunological events in asymptomatic Epstein-Barr virus infection in African children. PLOS Pathog. 2015;11(3):e1004746.
  • Shannon-Lowe C, Rickinson AB, Bell AI. Epstein–Barr virus-associated lymphomas. Philos Trans R Soc Lond B Biol Sci. 2017;372(1732):20160271. doi: 10.1098/rstb.2016.0271
  • Maslinska M. The role of Epstein–Barr virus infection in primary Sjögren’s syndrome. Curr Opin Rheumatol. 2019;31(5):475–83. doi: 10.1097/BOR.0000000000000622
  • Tsubota K, Fujishima H, Toda I, et al. Increased levels of Epstein-Barr virus DNA in lacrimal glands of Sjögren’s syndrome patients. Acta Ophthalmologica Scandinavica. 1995;73(5):425–430.
  • Stefanski AL, Tomiak C, Pleyer U, et al. The diagnosis and treatment of Sjogren’s syndrome. Dtsch Arztebl Int. 2017;114:354–61. doi: 10.3238/arztebl.2017.0354
  • Xuan J, Ji Z, Wang B, et al. Serological Evidence for the Association between Epstein-Barr virus infection and Sjogren’s syndrome. Front Immunol. 2020;11:590444. doi: 10.3389/fimmu.2020.590444
  • Chatterjee S, Iyer G, Srinivasan B, et al. Severe acute onset dry eye following presumed Epstein.Barr viral infection. Indian J Ophthalmol. 2020;68(4):642–644.
  • Li DQ, Luo L, Chen Z, et al. JNK and ERK MAP kinases mediate induction of IL-1β, TNF-α and IL-8 following hyperosmolar stress in human limbal epithelial cells. Exp Eye Res. 2006;82(4):588–96. doi: 10.1016/j.exer.2005.08.019
  • Park GB, Hur DY, Kim YS, et al. TLR 3/ TRIF signalling pathway regulates IL -32 and IFN -β secretion through activation of RIP -1 and TRAF in the human cornea. J Cell Mol Med. 2015;19(5):1042–54. doi: 10.1111/jcmm.12495
  • Park GB, Kim D, Kim YS, et al. The Epstein-Barr virus causes epithelial–mesenchymal transition in human corneal epithelial cells via Syk/src and Akt/Erk signaling pathways. Invest Ophthalmol Vis Sci. 2014;55(3):1770–9.
  • Keorochana N. A case report of Epstein-Barr virus-associated retinal vasculitis: successful treatment using only acyclovir therapy. Int Med Case Rep J. 2016;9:213–8. doi: 10.2147/IMCRJ.S107089
  • Mohanty A, Behera HS, Barik MR, et al. Microsporidia-induced stromal keratitis: a new cause of presumed immune stromal (interstitial) keratitis. Br J Ophthalmol. 2021;107(5):607–613.
  • Chen Y, Xu H. Epstein-Barr virus-associated Hemophagocytic Lymphohistiocytosis following cyclosporine for uveitis. Ocul Immunol Inflamm. 2020;28(4):549–551. doi: 10.1080/09273948.2019.1606258
  • Stanaway JD, Flaxman AD, Naghavi M, et al. The global burden of viral hepatitis from 1990 to 2013: findings from the global burden of disease study 2013. Lancet. 2016;388(10049):1081–1088.
  • Rajalakshmy AR, Malathi J, Madhavan HN, et al. Patients with dry eye without hepatitis C virus infection possess the viral RNA in their tears. Cornea. 2015;34(1):28–31. doi: 10.1097/ICO.0000000000000304
  • Rajalakshmy AR, Malathi J, Madhavan HN. HCV core and NS3 proteins mediate toll like receptor induced innate immune response in corneal epithelium. Exp Eye Res. 2014;128:117–128. doi: 10.1016/j.exer.2014.09.011
  • Rajalakshmy AR, Malathi J, Madhavan HN, et al. Hepatitis C virus core and NS3 antigens induced conjunctival inflammation via toll-like receptor-mediated signaling. Mol Vis. 2014;20:1388–97.
  • Karaman Erdur S, Kulac Karadeniz D, Kocabora MS, et al. Ocular surface and tear parameters in patients with chronic hepatitis C at initial stages of hepatic fibrosis. Eye Contact Lens. 2015;41(2):117–20.
  • McGivern DR, Masaki T, Williford S, et al. Kinetic analyses reveal potent and early blockade of hepatitis C virus assembly by NS5A inhibitors. Gastroenterology. 2014;147(2):453–62 e7.
  • Abd Elaziz MS, Nada ASE, ElSayed SH, et al. Ocular comorbidities with direct-acting antiviral treatment for chronic hepatitis C virus (HCV) patients. Int Ophthalmol. 2020;40(5):1245–1251.
  • Anisia-Iuliana A, Alina C, Elena CR, et al. Ophthalmological implications of the chronic infections with the hepatitis C virus. Rom J Ophthalmol. 2015;59(4):263–8.
  • Caroleo B, Colangelo L, Donato M, et al. Direct-acting antivirals inducing HCV-RNA sustained suppression improve xerophthalmia in HCV-infected patients. Curr Rev Clin Exp Pharmacol. 2022;17(2):156–60.
  • Shimizu E, Ogawa Y, Saijo Y, et al. Commensal microflora in human conjunctiva; characteristics of microflora in the patients with chronic ocular graft-versus-host disease. Ocul Surf. 2019;17(2):265–271.
  • Fondi K, Mihaltz K, Vecsei-Marlovits PV. Efficacy of topical hydrocortisone in combination with topical ciclosporin a for the treatment of dry eye disease in patients with Sjogren syndrome. J Ophthalmol. 2021;2021:7584370. doi: 10.1155/2021/7584370
  • Lee AJ, Ashkar AA. Herpes simplex virus-2 in the genital mucosa: insights into the mucosal host response and vaccine development. Curr Opin Infect Dis. 2012;25(1):92–99. doi: 10.1097/QCO.0b013e32834e9a56
  • Mushiga Y, Komoto T, Nagai N, et al. Effects of intraocular treatments for Epstein-Barr virus (EBV) retinitis: a case report. Medicine (Baltimore). 2021;100(48):e28101.
  • Mohamed HB, El-Hamid BN A, Fathalla D, et al. Current trends in pharmaceutical treatment of dry eye disease: a review. Eur J Pharm Sci. 2022;175:106206. doi: 10.1016/j.ejps.2022.106206
  • Yener AÜ. COVID-19 and the eye: ocular manifestations, treatment and protection measures. Ocul Immunol Inflamm. 2021;29(6):1225–1233. doi: 10.1080/09273948.2021.1977829
  • Merayo-Lloves J, Baltatzis S, Foster CS. Epstein-Barr virus dacryoadenitis resulting in keratoconjunctivitis sicca in a child. Am J Ophthalmol. 2001;132(6):922–923. doi: 10.1016/S0002-9394(01)01182-5
  • Nejati F, Junne S, Kurreck J, et al. Quantification of Major Bacteria and Yeast Species in kefir consortia by multiplex TaqMan qPCR. Front Microbiol. 2020;11:1291. doi: 10.3389/fmicb.2020.01291
  • Nakano S, Sugita S, Tomaru Y, et al. Establishment of multiplex solid-phase strip PCR test for detection of 24 ocular infectious disease pathogens. Invest Ophthalmol Vis Sci. 2017;58(3):1553–1559.
  • Zhu JY, Zhang X, Zheng X, et al. Dry eye symptoms in interferon regulatory factor 3-deficient mice due to herpes simplex virus infection in harderian gland and lacrimal gland. Exp Eye Res. 2022;219:109053. doi: 10.1016/j.exer.2022.109053
  • Sterczewska A, Wojtyniak A, Mrukwa-Kominek E. Ocular complaints from students during COVID-19 pandemic. Adv Clin Exp Med. 2022;31(2):197–202. doi: 10.17219/acem/144199
  • Gambini G, Savastano MC, Savastano A, et al. Ocular surface impairment after coronavirus disease 2019: a cohort study. Cornea. 2021;40(4):477–483.
  • Hu Y, Chen T, Liu M, et al. Positive detection of SARS‐CoV‐2 combined HSV1 and HHV6B virus nucleic acid in tear and conjunctival secretions of a non‐conjunctivitis COVID‐19 patient with obstruction of common lacrimal duct. Acta Ophthalmol. 2020;98(8):859–863.
  • Taylor JD. AIDS and hepatitis B and C: contamination risk at transurethral resection. A study using sodium fluorescein as a marker. Med J Aust. 1990;153(5):257–260. doi: 10.5694/j.1326-5377.1990.tb136896.x
  • Goncalves DU, Proietti FA, Ribas J, et al. Epidemiology, treatment, and prevention of human T-Cell leukemia virus type 1-associated diseases. Clin Microbiol Rev. 2010;23(3):577–89.
  • Jacobi C, Wenkel H, Jacobi A, et al. Hepatitis C and ocular surface disease. Am J Ophthalmol. 2007;144(5):705–11.e1.
  • Li S, Li A, Ruan F, et al. Evaluation of the clinical characteristics of dry eye secondary to different types of liver diseases. Ophthalmol Ther. 2023;12(5):2493–503.
  • Rao P, McKown RL, Laurie GW, et al. Development of lacrimal gland inflammation in the mouse model of herpes stromal keratitis. Exp Eye Res. 2019;184:101–106. doi: 10.1016/j.exer.2019.04.022
  • Wan S, Zhou Y, Huang Q, et al. Dot1l aggravates keratitis induced by herpes simplex virus type 1 in mice via p38 MAPK-Mediated oxidative stress. Oxid Med Cell Longev. 2021;2021:6612689. doi: 10.1155/2021/6612689
  • Zhou X, Ramke M, Chintakuntlawar AV, et al. Role of MyD88 in adenovirus keratitis. Immunol Cell Biol. 2017;95(1):108–116.
  • Zhang S, Zang Y, Lu Q, et al. Establishing an animal model of cytomegalovirus keratouveitis in rats: broad infection of anterior segment tissue by cytomegalovirus. Invest Ophthalmol Vis Sci. 2021;62(13):22.
  • Larsen IV, Clausius H, Kolb AW, et al. Both CD8+ and CD4+ T cells contribute to corneal clouding and viral clearance following vaccinia virus infection in C57BL/6 mice. J Virol. 2016;90(14):6557–72. doi: 10.1128/JVI.00570-16
  • Wang J, Kaplan N, Wysocki J, et al. The ACE2-deficient mouse: a model for a cytokine storm-driven inflammation. FASEB J. 2020;34(8):10505–10515.
  • Jones L, Downie LE, Korb D, et al. TFOS DEWS II management and therapy report. Ocul Surf. 2017;15(3):575–628.
  • Chan YH, Sun CC. Efficacy and safety of topical cyclosporine 0.1% in moderate-to-severe dry eye disease refractory to topical cyclosporine 0.05% regimen. Taiwan J Ophthalmol. 2023;13(1):68–74. doi: 10.4103/tjo.TJO-D-22-00140
  • Clayton JA, Longo DL. Dry Eye. N Engl J Med. 2018;378(23):2212–2223. doi: 10.1056/NEJMra1407936
  • Huang R, Su C, Fang L, et al. Dry eye syndrome: comprehensive etiologies and recent clinical trials. Int Ophthalmol. 2022;42(10):3253–3272.