1,258
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Characterising phagocytes and measuring phagocytosis from live Galleria mellonella larvae

, , , , , & ORCID Icon show all
Article: 2313413 | Received 30 Oct 2023, Accepted 29 Jan 2024, Published online: 15 Feb 2024

References

  • Gladstone M, Li Y, Spiropoulos J, et al. Galleria mellonella - a novel infection model for the mycobacterium tuberculosis complex. Virulence. 2018;9(1):1126–15. doi: 10.1080/21505594.2018.1491255
  • Norville IH, Hartley MG, Martinez E, et al. Galleria mellonella as an alternative model of Coxiella burnetii infection. Microbiology. 2014;160(6):1175–1181. doi: 10.1099/mic.0.077230-0
  • Sheehan G, Kavanagh K. Proteomic analysis of the responses of Candida albicans during infection of galleria mellonella larvae. J Fungi Basel, Switzerland. 2019.
  • Durieux M-F, Melloul É, Jemel S, et al. Galleria mellonella as a screening tool to study virulence factors of Aspergillus fumigatus. Virulence. 2021;12(1):818–834. doi: 10.1080/21505594.2021.1893945
  • Sheehan G, Clarke G, Kavanagh K. Characterisation of the cellular and proteomic response of Galleria mellonella larvae to the development of invasive aspergillosis. BMC Microbiol. 2018;18(1):63. doi: 10.1186/s12866-018-1208-6
  • Garcia-Bustos V, Pemán J, Ruiz-Gaitán A, et al. Host–pathogen interactions Candida auris infection: fungal behaviour and immune response in Galleria mellonella. Emerg Microbes Infect. 2022;11(1):136–146. doi: 10.1080/22221751.2021.2017756
  • Senior NJ, Bagnall MC, Champion OL, et al. Galleria mellonella as an infection model for Campylobacter jejuni virulence. J Med Microbiol. 2011;60(5):661–669. doi: 10.1099/jmm.0.026658-0
  • Wagley S, Borne R, Harrison J, et al. Galleria mellonella as an infection model to investigate virulence of Vibrio parahaemolyticus. Virulence. 2018;9(1):197–207. doi: 10.1080/21505594.2017.1384895
  • Wojda I, Staniec B, Sułek M, et al. The greater wax moth Galleria mellonella: biology and use in immune studies. Pathog Dis. 2020;78(9). doi: 10.1093/femspd/ftaa057
  • Cerenius L, Söderhäll K. The prophenoloxidase-activating system in invertebrates. Immunol Rev. 2004;198(1):116–126. doi: 10.1111/j.0105-2896.2004.00116.x
  • Tang H. Regulation and function of the melanization reaction in Drosophila. Fly (Austin). 2009;3(1):105–111. doi: 10.4161/fly.3.1.7747
  • Loh JMS, Adenwalla N, Wiles S, et al. Galleria mellonella larvae as an infection model for group A streptococcus. Virulence. 2013;4(5):419–428. doi: 10.4161/viru.24930
  • Brown SE, Howard A, Kasprzak AB, et al. A peptidomics study reveals the impressive antimicrobial peptide arsenal of the wax moth Galleria mellonella. Insect Biochem Mol Biol. 2009;39(11):792–800. doi: 10.1016/j.ibmb.2009.09.004
  • Mak P, Zdybicka-Barabas A, Cytryńska M. A different repertoire of Galleria mellonella antimicrobial peptides in larvae challenged with bacteria and fungi. Dev Comp Immunol. 2010;34(10):1129–1136. doi: 10.1016/j.dci.2010.06.005
  • Lavine MD, Strand MR. Insect hemocytes and their role in immunity. Insect Biochem Mol Biol. 2002;32(10):1295–1309. doi: 10.1016/S0965-1748(02)00092-9
  • Musselman LP, Fink JL, Ramachandran PV, et al. Role of fat body lipogenesis in protection against the effects of caloric overload in Drosophila. J Biol Chem. 2013;288(12):8028–8042. doi: 10.1074/jbc.M112.371047
  • Wu G, Liu J, Li M, et al. Prior infection of Galleria mellonella with sublethal dose of bt elicits immune priming responses but incurs metabolic changes. J Insect Physiol. 2022;139:104401. doi: 10.1016/j.jinsphys.2022.104401
  • Mowlds P, Kavanagh K. Effect of pre-incubation temperature on susceptibility of Galleria mellonella larvae to infection by Candida albicans. Mycopathologia. 2008;165(1):5–12. doi: 10.1007/s11046-007-9069-9
  • Asai M, Sheehan G, Li Y, et al. Innate immune responses of Galleria mellonella to mycobacterium bovis BCG challenge identified using proteomic and molecular approaches. Front Cell Infect Microbiol. 2021;11:619981. doi: 10.3389/fcimb.2021.619981
  • Perdoni F, Falleni M, Tosi D, et al. A histological procedure to study fungal infection in the wax moth Galleria mellonella. Eur J Histochem. 2014;58(3):2428. doi: 10.4081/ejh.2014.2428
  • Eleftherianos I, Heryanto C, Bassal T, et al. Haemocyte-mediated immunity in insects: cells, processes and associated components in the fight against pathogens and parasites. Immunology. 2021;164(3):401–432. doi: 10.1111/imm.13390
  • Hultmark D, Andó I. Hematopoietic plasticity mapped in Drosophila and other insects. Elife. 2022;11:e78906. doi: 10.7554/eLife.78906
  • Tojo S, Naganuma F, Arakawa K, et al. Involvement of both granular cells and plasmatocytes in phagocytic reactions in the greater wax moth, Galleria mellonella. J Insect Physiol. 2000;46(7):1129–1135. doi: 10.1016/S0022-1910(99)00223-1
  • Jiang H, Vilcinskas A, Kanost MR. Immunity in lepidopteran insects. Adv Exp Med Biol. 2010;708:181–204.
  • Zdybicka-Barabas A, Sowa-Jasiłek A, Stączek S, et al. Different forms of apolipophorin III in Galleria mellonella larvae challenged with bacteria and fungi. Peptides. 2015;68:105–112. doi: 10.1016/j.peptides.2014.12.013
  • Ratcliffe NA, Gagen SJ. Studies on the in vivo cellular reactions of insects: an ultrastructural analysis of nodule formation in Galleria mellonella. Tissue Cell. 1977;9(1):73–85. doi: 10.1016/0040-8166(77)90050-7
  • Wu G, Liu Y, Ding Y, et al. Ultrastructural and functional characterization of circulating hemocytes from Galleria mellonella larva: cell types and their role in the innate immunity. Tissue Cell. 2016;48(4):297–304. doi: 10.1016/j.tice.2016.06.007
  • Gago S, García-Rodas R, Cuesta I, et al. Candida parapsilosis, Candida orthopsilosis, and Candida metapsilosis virulence in the non-conventional host Galleria mellonella. Virulence. 2014;5(2):278–285. doi: 10.4161/viru.26973
  • Tomiotto-Pellissier F, Cataneo AHD, Orsini TM, et al. Galleria mellonella hemocytes: A novel phagocytic assay for Leishmania (Viannia) braziliensis. J Microbiol Methods. 2016;131:45–50. doi: 10.1016/j.mimet.2016.10.001
  • Wrońska AK, Kaczmarek A, Kazek M, et al. Infection of Galleria mellonella (lepidoptera) larvae with the entomopathogenic fungus conidiobolus coronatus (entomophthorales) induces apoptosis of hemocytes and affects the concentration of eicosanoids in the Hemolymph. Front Physiol. 2022;12. doi: 10.3389/fphys.2021.774086
  • Wrońska AK, Kaczmarek A, Sobich J, et al. Intracellular cytokine detection based on flow cytometry in hemocytes from Galleria mellonella larvae: a new protocol. PloS One. 2022;17(9):e0274120. doi: 10.1371/journal.pone.0274120
  • Browne N, Surlis C, Maher A, et al. Prolonged pre-incubation increases the susceptibility of Galleria mellonella larvae to bacterial and fungal infection. Virulence. 2015;6(5):458–465. doi: 10.1080/21505594.2015.1021540
  • García-García E, García-García PL, Rosales C. An fMLP receptor is involved in activation of phagocytosis by hemocytes from specific insect species. Dev Comp Immunol. 2009;33(6):728–739. doi: 10.1016/j.dci.2008.12.006
  • Rousselle C, Robert-Nicoud M, Ronot X. Flow cytometric analysis of DNA content of living and fixed cells: a comparative study using various fixatives. Histochem J. 1998;30(11):773–781. doi: 10.1023/A:1002942418520
  • Ballou ER, Avelar GM, Childers DS, et al. Lactate signalling regulates fungal β-glucan masking and immune evasion. Nat Microbiol. 2016;2(2):16238. doi: 10.1038/nmicrobiol.2016.238
  • Jorjão AL, Oliveira LD, Scorzoni L, et al. From moths to caterpillars: Ideal conditions for Galleria mellonella rearing for in vivo microbiological studies. Virulence. 2018;9(1):383–389. doi: 10.1080/21505594.2017.1397871
  • Fuchs BB, O’Brien E, Khoury JBE, et al. Methods for using Galleria mellonella as a model host to study fungal pathogenesis. Virulence. 2010;1(6):475–482. doi: 10.4161/viru.1.6.12985
  • Gillum AM, Tsay EY, Kirsch DR. Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae ura3 and E. coli pyrF mutations. Mol Gen Genet. 1984;198(1):179–182. doi: 10.1007/BF00328721
  • FM K, CG DK, Stanley B. Cell wall-related bionumbers and bioestimates of Saccharomyces cerevisiae and Candida albicans. Eukaryot Cell. 2014;13(1):2–9. doi: 10.1128/EC.00250-13
  • Sajed T, Marcu A, Ramirez M, et al. ECMDB 2.0: A richer resource for understanding the biochemistry of E. coli. Nucleic Acids Res. 2016;44(D1): D495–501. doi: 10.1093/nar/gkv1060
  • Brown GD, Gordon S. A new receptor for β-glucans. Nature. 2001;413(6851):36–37. doi: 10.1038/35092620
  • Pradhan A, Avelar GM, Bain JM, et al. Non-canonical signalling mediates changes in fungal cell wall PAMPs that drive immune evasion. Nat Commun. 2019;10(1):5315. doi: 10.1038/s41467-019-13298-9
  • Ene IV, Adya AK, Wehmeier S, et al. Host carbon sources modulate cell wall architecture, drug resistance and virulence in a fungal pathogen. Cell Microbiol. 2012;14(9):1319–1335. doi: 10.1111/j.1462-5822.2012.01813.x
  • Ene IV, Cheng S-C, Netea MG, et al. Growth of Candida albicans cells on the physiologically relevant carbon source lactate affects their recognition and phagocytosis by immune cells. Infect Immun. 2013;81(1):238–248. doi: 10.1128/IAI.01092-12
  • Wrońska AK, Boguś MI, Song L. Heat shock proteins (HSP 90, 70, 60, and 27) in Galleria mellonella (lepidoptera) hemolymph are affected by infection with conidiobolus coronatus (entomophthorales). PloS One. 2020;15(2):e0228556. doi: 10.1371/journal.pone.0228556
  • Elmekawy A, Elshehaby M, Saber S, et al. Evaluation of Galleria mellonella immune response as a key step toward plastic degradation. J Basic Appl Zool. 2023;84(1):27. doi: 10.1186/s41936-023-00349-3
  • Torres M, Pinzón EN, Rey FM, et al. Galleria mellonella as a Novelty in vivo Model of Host-Pathogen Interaction for Malassezia furfur CBS 1878 and Malassezia pachydermatis CBS 1879. Front Cell Infect Microbiol. 2020;10. doi: 10.3389/fcimb.2020.00199
  • Admella J, Torrents E. A straightforward method for the isolation and cultivation of Galleria mellonella hemocytes. Int J Mol Sci. 2022;23(21):13483. doi: 10.3390/ijms232113483
  • Zhang Y, Li J, Yu F, et al. Allograft inflammatory factor-1 stimulates hemocyte immune activation by enhancing phagocytosis and expression of inflammatory cytokines in Crassostrea gigas. Fish Shellfish Immunol. 2013;34(5):1071–1077. doi: 10.1016/j.fsi.2013.01.014
  • Sheehan G, Kavanagh K. Analysis of the early cellular and humoral responses of galleria mellonella larvae to infection by Candida albicans. Virulence. 2018;9(1):163–172. doi: 10.1080/21505594.2017.1370174
  • Kim CH, Shin YP, Noh MY, et al. An insect multiligand recognition protein functions as an opsonin for the phagocytosis of microorganisms. J Biol Chem. 2010;285(33):25243–25250. doi: 10.1074/jbc.M110.134940
  • Anderl I, Vesala L, Ihalainen TO, et al. Transdifferentiation and proliferation in two distinct hemocyte lineages in Drosophila melanogaster larvae after wasp infection. PLOS Pathog. 2016;12(7):e1005746. doi: 10.1371/journal.ppat.1005746
  • Pradhan A, Avelar GM, Bain JM, et al. Hypoxia promotes immune evasion by triggering β-glucan masking on the Candida albicans cell surface via mitochondrial and cAMP-protein kinase a signaling. MBio. 2018;9(6):e01318–18. doi: 10.1128/mBio.01318-18
  • Lopes JP, Stylianou M, Backman E, et al. Evasion of Immune Surveillance in Low Oxygen Environments Enhances Candida albicans Virulence. MBio. 2018;9(6). doi: 10.1128/mBio.02120-18
  • Childers DS, Avelar GM, Bain JM, et al. Epitope Shaving Promotes Fungal Immune Evasion. MBio. 2020;11(4):11. doi:10.1128/mBio.00984-20
  • Russell WMS, Burch RL. The principles of humane experimental technique. Wheathampstead (UK): Universities Federation for Animal Welfare; 1959.