1,538
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Pathogenicity and virulence of Yersinia

& ORCID Icon
Article: 2316439 | Received 05 Oct 2023, Accepted 04 Feb 2024, Published online: 22 Feb 2024

References

  • Cui Y, Schmid B, Cao H, et al. Evolutionary selection of biofilm-mediated extended phenotypes in Yersinia pestis in response to a fluctuating environment. Nat Commun. 2020;11(1):281. doi: 10.1038/s41467-019-14099-w
  • Chain P, Carniel E, Larimer F, et al. Insights into the evolution of Yersinia pestis through whole-genome comparison with Yersinia pseudotuberculosis. Proc Natl Acad Sci. 2004;101(38):13826–23. doi: 10.1073/pnas.0404012101
  • Rasmussen S, Allentoft ME, Nielsen K, et al. Early divergent strains of Yersinia pestis in Eurasia 5,000 years ago. Cell. 2015;163(3):571–82. doi: 10.1016/j.cell.2015.10.009
  • Rascovan N, Sjogren KG, Kristiansen K, et al. Emergence and spread of basal lineages of Yersinia pestis during the neolithic decline. Cell. 2019;176(1–2):295–305 e10. doi: 10.1016/j.cell.2018.11.005
  • Wagner DM, Klunk J, Harbeck M, et al. Yersinia pestis and the plague of Justinian 541–543 AD: a genomic analysis. The Lancet Infectious Diseases. 2014;14(4):319–326. doi: 10.1016/S1473-3099(13)70323-2
  • Tan S, Dutta A, Jakubovics N, et al. YersiniaBase: a genomic resource and analysis platform for comparative analysis of Yersinia. BMC Bioinformatics. 2014;16(1):9. doi: 10.1186/s12859-014-0422-y
  • Duan R, Liang J, Shi G, et al. Homology analysis of pathogenic Yersinia species Yersinia enterocolitica, Yersinia pseudotuberculosis, and Yersinia pestis based on multilocus sequence typing. J Clin Microbiol. 2014;52(1):20–9. doi: 10.1128/JCM.02185-13
  • Butler T. Plague gives surprises in the first decade of the 21st century in the United States and worldwide. Am J Trop Med Hyg. 2013;89(4):788–93. doi: 10.4269/ajtmh.13-0191
  • Nelson C, Meaney-Delman D, Fleck-Derderian S, et al. Antimicrobial treatment and prophylaxis of plague: recommendations for naturally acquired infections and bioterrorism response. MMWR Recomm Rep. 2021;70(3):1–27. doi: 10.15585/mmwr.rr7003a1
  • Hinnebusch J, Cherepanov P, Du Y, et al. Murine toxin of Yersinia pestis shows phospholipase D activity but is not required for virulence in mice. International Journal Of Medical Microbiology. 2000;290(4–5):483–487. doi: 10.1016/S1438-4221(00)80070-3
  • Hinnebusch B, Rudolph A, Cherepanov P, et al. Role of Yersinia murine toxin in survival of Yersinia pestis in the midgut of the flea vector. Science. 2002;296(5568):733–735. doi: 10.1126/science.1069972
  • Hinnebusch B, Perry R, Schwan T. Role of the Yersinia pestis hemin storage (hms) locus in the transmission of plague by fleas. Science. 1996;273(5273):367–70. doi: 10.1126/science.273.5273.367
  • Lindler L, Klempner M, Straley S. Yersinia pestis pH 6 antigen: genetic, biochemical, and virulence characterization of a protein involved in the pathogenesis of bubonic plague. Infect Immun. 1990;58(8):2569–2577. doi: 10.1128/iai.58.8.2569-2577.1990
  • Dewitte A, Bouvenot T, Pierre F, et al. A refined model of how Yersinia pestis produces a transmissible infection in its flea vector. PLOS Pathog. 2020;16(4):e1008440. doi: 10.1371/journal.ppat.1008440
  • Bland D, Miarinjara A, Bosio C, et al. Acquisition of Yersinia murine toxin enabled Yersinia pestis to expand the range of mammalian hosts that sustain flea-borne plague. PloS Path. 2021;17(10):e1009995. doi: 10.1371/journal.ppat.1009995
  • Jarrett C, Deak E, Isherwood K, et al. Transmission of Yersinia pestis from an infectious biofilm in the flea vector. J Infect Dis. 2004;190(4):783–92. doi: 10.1086/422695
  • Bobrov A, Kirillina O, Forman S, et al. Insights into Yersinia pestis biofilm development: topology and co-interaction of Hms inner membrane proteins involved in exopolysaccharide production. Env Microbiol. 2008;10(6):1419–32. doi: 10.1111/j.1462-2920.2007.01554.x
  • Lillard J, Fetherston J, Pedersen L, et al. Sequence and genetic analysis of the hemin storage (hms) system of Yersinia pestis. Gene. 1997;193(1):13–21. doi: 10.1016/S0378-1119(97)00071-1
  • Lillard J, Bearden S, Fetherston J, et al. The haemin storage (Hms+) phenotype of Yersinia pestis is not essential for the pathogenesis of bubonic plague in mammals. Microbiology. 1999;145(Pt 1):197–209. doi: 10.1099/13500872-145-1-197
  • Schubert S, Rakin A, Karch H, et al. Prevalence of the “high-pathogenicity island” of Yersinia species among Escherichia coli strains that are pathogenic to humans. Infect Immun. 1998;66(2):480–5. doi: 10.1128/IAI.66.2.480-485.1998
  • Hinnebusch B, Jarrett C, Bland D. Molecular and genetic mechanisms that mediate transmission of Yersinia pestis by fleas. Biomolecules. 2021;11(2):1–13. doi: 10.3390/biom11020210
  • Chouikha I, Hinnebusch B. Silencing urease: a key evolutionary step that facilitated the adaptation of Yersinia pestis to the flea-borne transmission route. Proc Natl Acad Sci. 2014;111(52):18709–14. doi: 10.1073/pnas.1413209111
  • Sun Y, Jarrett C, Bosio C, et al. Retracing the evolutionary path that led to flea-borne transmission of Yersinia pestis. Cell Host Microbe. 2014;15(5):578–86. doi: 10.1016/j.chom.2014.04.003
  • Fukushima H, Shimizu S, Inatsu Y. Yersinia enterocolitica and Yersinia pseudotuberculosis detection in foods. J Pathog. 2011;2011:1–9. doi: 10.4061/2011/735308
  • Grahek-Ogden D, Schimmer B, Cudjoe K, et al. Outbreak of Yersinia enterocolitica serogroup O: 9 infection and processed pork, Norway. Emerg Infect Dis. 2007;13(5):754–6. doi: 10.3201/eid1305.061062
  • Fukushima H, Matsuda Y, Seki R, et al. Geographical heterogeneity between far Eastern and Western countries in prevalence of the virulence plasmid, the superantigen Yersinia pseudotuberculosis-derived mitogen, and the high-pathogenicity island among Yersinia pseudotuberculosis strains. J Clin Microbiol. 2001;39(10):3541–7. doi: 10.1128/JCM.39.10.3541-3547.2001
  • Saraka D, Savin C, Kouassi S, et al. Yersinia enterocolitica, a neglected cause of human enteric infections in Côte d’Ivoire. PloS Negl Trop Dis. 2017;11(1):e0005216. doi: 10.1371/journal.pntd.0005216
  • Scallan E, Hoekstra RM, Angulo FJ, et al. Foodborne illness acquired in the United States—Major pathogens. Emerg Infect Dis. 2011;17(1):7–15. doi: 10.3201/eid1701.P11101
  • Lucero-Estrada C, Favier G, Escudero M. An overview of Yersinia enterocolitica and related species in samples of different origin from San Luis, Argentina. Food Microbiol. 2020;86:103345. doi: 10.1016/j.fm.2019.103345
  • Joutsen S, Laukkanen-Ninios R, Henttonen H, et al. Yersinia spp. In wild rodents and shrews in Finland. Vector Borne Zoonotic Dis. 2017;17(5):303–11. doi: 10.1089/vbz.2016.2025
  • Duan R, Liang J, Zhang J, et al. Prevalence of Yersinia enterocolitica bioserotype 3/O: 3 among children with diarrhea, China, 2010–2015. Emerg Infect Dis. 2017;23(9):1502–1509. doi: 10.3201/eid2309.160827
  • Singh I, Virdi J. Production of Yersinia stable toxin (YST) and distribution of yst genes in biotype 1A strains of Yersinia enterocolitica. J Med Microbiol. 2004;53(11):1065–8. doi: 10.1099/jmm.0.45527-0
  • Delor I, Kaeckenbeeck A, Wauters G, et al. Nucleotide sequence of yst, the Yersinia enterocolitica gene encoding the heat-stable enterotoxin, and prevalence of the gene among pathogenic and nonpathogenic Yersiniae. Infect Immun. 1990;58:2983–2988. doi: 10.1128/iai.58.9.2983-2988.1990
  • Bengoechea J, Najdenski H, Skurnik M. Lipopolysaccharide O antigen status of Yersinia enterocolitica O: 8 is essential for virulence and absence of O antigen affects the expression of other Yersinia virulence factors. Mol Microbiol. 2004;52(2):451–69. doi: 10.1111/j.1365-2958.2004.03987.x
  • Skurnik M, Venho R, Bengoechea J, et al. The lipopolysaccharide outer core of Yersinia enterocolitica serotype O: 3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol. 1999;31(5):1443–62. doi: 10.1046/j.1365-2958.1999.01285.x
  • Al-Hendy A, Toivanen P, Skurnik M. Lipopolysaccharide O side chain of Yersinia enterocolitica O: 3 is an essential virulence factor in an orally infected murine model. Infect Immun. 1992;60(3):870–5. doi: 10.1128/iai.60.3.870-875.1992
  • European Food Safety A, European Centre for Disease P, Control. The European Union summary report on trends and sources of zoonoses, zoonotic agents and food-borne outbreaks in 2017. EFSA J. 2018;16(12):e05500. doi: 10.2903/j.efsa.2018.5500
  • Liang J, Wang X, Xiao Y, et al. Prevalence of Yersinia enterocolitica in pigs slaughtered in Chinese abattoirs. Appl Environ Microbiol. 2012;78(8):2949–56. doi: 10.1128/AEM.07893-11
  • Riahi SM, Ahmadi E, Zeinali T. Global prevalence of Yersinia enterocolitica in cases of gastroenteritis: a systematic review and meta-analysis. Int J Microbiol. 2021;2021:1499869. doi: 10.1155/2021/1499869
  • Durand E, Maldonado-Arocho F, Castillo C, et al. The presence of professional phagocytes dictates the number of host cells targeted for Yop translocation during infection. Cell Microbiol. 2010;12(8):1064–82. doi: 10.1111/j.1462-5822.2010.01451.x
  • Sebbane F, Uversky V, Anisimov A. Yersinia pestis plasminogen activator. Biomolecules. 2020;10(11):1554. doi: 10.3390/biom10111554
  • Sodeinde O, Subrahmanyam Y, Stark K, et al. A surface protease and the invasive character of plague. Science. 1992;258(5084):1004–7. doi: 10.1126/science.1439793
  • Satala D, Bednarek A, Kozik A, et al. The recruitment and activation of plasminogen by bacteria—the involvement in chronic infection development. IJMS. 2023;24(13):24. doi: 10.3390/ijms241310436
  • Heissig B, Salama Y, Takahashi S, et al. The multifaceted role of plasminogen in inflammation. Cell Signal. 2020;75:109761. doi: 10.1016/j.cellsig.2020.109761
  • Galvan E, Lasaro M, Schifferli D. Capsular antigen fraction 1 and Pla modulate the susceptibility of Yersinia pestis to pulmonary antimicrobial peptides such as cathelicidin. Infect Immun. 2008;76(4):1456–1464. doi: 10.1128/IAI.01197-07
  • Liu F, Chen H, Galvan E, et al. Effects of psa and F1 on the adhesive and invasive interactions of Yersinia pestis with human respiratory tract epithelial cells. Infect Immun. 2006;74(10):5636–5644. doi: 10.1128/IAI.00612-06
  • Cowan C, Jones H, Kaya Y, et al. Invasion of epithelial cells by Yersinia pestis: evidence for a Y.pestis -specific invasin. Infect Immun. 2000;68(8):4523–4530. doi: 10.1128/IAI.68.8.4523-4530.2000
  • Banerjee S, Crane S, Pechous R. A dual role for the plasminogen activator protease during the preinflammatory phase of primary pneumonic plague. J Infect Dis. 2020;222(3):407–16. doi: 10.1093/infdis/jiaa094
  • Lahteenmaki K, Kukkonen M, Korhonen T. The Pla surface protease/adhesin of Yersinia pestis mediates bacterial invasion into human endothelial cells. FEBS Lett. 2001;504(1–2):69–72. doi: 10.1016/S0014-5793(01)02775-2
  • Kumar A, Harjai K, Chhibber S. Early cytokine response to lethal challenge of Klebsiella pneumoniae averted the prognosis of pneumonia in FyuA immunized mice. Microb Pathog. 2020;144:104161. doi: 10.1016/j.micpath.2020.104161
  • Rakin A, Heesemann J. Virulence-associated fyuA / irp2 gene cluster of Yersinia enterocolitica biotype 1B carries a novel insertion sequence is 1328. FEMS Microbiology Letters. 1994;129(2–3):287–292. doi: 10.1111/j.1574-6968.1995.tb07594.x
  • Zeth K. Structure and uptake mechanism of bacteriocins targeting peptidoglycan renewal. Biochem Soc Trans. 2012;40(6):1560–5. doi: 10.1042/BST20120194
  • Hall P, Brubaker R. Pesticin-dependent generation of osmotically stable spheroplast-like structures. J Bacteriol. 1978;136(2):786–789. doi: 10.1128/jb.136.2.786-789.1978
  • Vollmer W, Pilsl H, Hantke K, et al. Pesticin displays muramidase activity. J Bacteriol. 1997;179(5):1580–3. doi: 10.1128/jb.179.5.1580-1583.1997
  • Achtman M, Morelli G, Zhu P, et al. Microevolution and history of the plague bacillus, Yersinia pestis. Proc Natl Acad Sci. 2004;101(51):17837–42. doi: 10.1073/pnas.0408026101
  • Eppinger M, Worsham P, Nikolich M, et al. Genome sequence of the deep-rooted Yersinia pestis strain Angola reveals new insights into the evolution and pangenome of the plague bacterium. J Bacteriol. 2010;192(6):1685–99. doi: 10.1128/JB.01518-09
  • Leal N, Sobreira M, Araujo A, et al. Viability of Yersinia pestis subcultures in agar stabs. Lett Appl Microbiol. 2016;62(1):91–5. doi: 10.1111/lam.12519
  • Lindler L, Plano G, Burland V, et al. Complete DNA sequence and detailed analysis of the Yersinia pestis KIM5 plasmid encoding murine toxin and capsular antigen. Infect Immun. 1998;66(12):5731–42. doi: 10.1128/IAI.66.12.5731-5742.1998
  • Zavialov A, Berglund J, Pudney A, et al. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell. 2003;113(5):587–96. doi: 10.1016/S0092-8674(03)00351-9
  • Peters D, Reifs A, Alonso-Caballero A, et al. Unraveling the molecular determinants of the anti-phagocytic protein cloak of plague bacteria. PLOS Pathog. 2022;18(3):e1010447. doi: 10.1371/journal.ppat.1010447
  • Friedlander A, Welkos S, Worsham P, et al. Relationship between virulence and immunity as revealed in recent studies of the Fl capsule of Yersinia pestis. Clinical Infectious Diseases. 1995;21(Supplement_2):S178–81. doi: 10.1093/clinids/21.Supplement_2.S178
  • Anderson G, Worsham P, Bolt C, et al. Protection of mice from fatal bubonic and pneumonic plague by passive immunization with monoclonal antibodies against the F1 protein of Yersinia pestis. The American Journal Of Tropical Medicine And Hygiene. 1997;56(4):471–473. doi: 10.4269/ajtmh.1997.56.471
  • Kolodziejek A, Hovde C, Minnich S. Contributions of Yersinia pestis outer membrane protein ail to plague pathogenesis. Curr Opin Infect Dis. 2022;35(3):188–95. doi: 10.1097/QCO.0000000000000830
  • Bartra S, Styer K, O’Bryant D, et al. Resistance of Yersinia pestis to complement-dependent killing is mediated by the Ail outer membrane protein. Infect Immun. 2008;76(2):612–22. doi: 10.1128/IAI.01125-07
  • Muhlenkamp M, Oberhettinger P, Leo J, et al. Yersinia adhesin a (YadA) – beauty & beast. International Journal Of Medical Microbiology. 2015;305(2):252–258. doi: 10.1016/j.ijmm.2014.12.008
  • Chauhan N, Wrobel A, Skurnik M, et al. Yersinia adhesins: an arsenal for infection. Proteomics Clin Appl. 2016;10(9–10):949–63. doi: 10.1002/prca.201600012
  • Thomson J, Plecha S, Krukonis E. Ail provides multiple mechanisms of serum resistance to Yersinia pestis. Mol Microbiol. 2019;111(1):82–95. doi: 10.1111/mmi.14140
  • Tsang T, Felek S, Krukonis E. Ail binding to fibronectin facilitates Yersinia pestis binding to host cells and Yop delivery. Infect Immun. 2010;78(8):3358–68. doi: 10.1128/IAI.00238-10
  • Tsang T, Wiese J, Felek S, et al. Ail proteins of Yersinia pestis and Y. pseudotuberculosis have different cell binding and invasion activities. PloS One. 2013;8(12):e83621. doi: 10.1371/journal.pone.0083621
  • Skurnik M, Wolf-Watz H. Analysis of the yopA gene encoding the Yop1 virulence determinants of Yersinia spp. Mol Microbiol. 1989;3(4):517–29. doi: 10.1111/j.1365-2958.1989.tb00198.x
  • Paczosa M, Fisher M, Maldonado-Arocho F, et al. Yersinia pseudotuberculosis uses ail and YadA to circumvent neutrophils by directing Yop translocation during lung infection. Cell Microbiol. 2014;16(2):247–68. doi: 10.1111/cmi.12219
  • China B, N’Guyen B, de Bruyere M, et al. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect Immun. 1994;62(4):1275–81. doi: 10.1128/iai.62.4.1275-1281.1994
  • Kirjavainen V, Jarva H, Biedzka-Sarek M, et al. Yersinia enterocolitica serum resistance proteins YadA and ail bind the complement regulator C4b-binding protein. PLOS Pathog. 2008;4(8):e1000140. doi: 10.1371/journal.ppat.1000140
  • Casutt-Meyer S, Renzi F, Schmaler M, et al. Oligomeric coiled-coil adhesin YadA is a double-edged sword. PloS One. 2010;5(12):e15159. doi: 10.1371/journal.pone.0015159
  • Gillenius E, Urban C. The adhesive protein invasin of Yersinia pseudotuberculosis induces neutrophil extracellular traps via β1 integrins. Microbes And Infection. 2015;17(5):327–336. doi: 10.1016/j.micinf.2014.12.014
  • Pepe J, Badger J, Miller V. Growth phase and low pH affect the thermal regulation of the Yersinia enterocolitica inv gene. Mol Microbiol. 1994;11(1):123–35. doi: 10.1111/j.1365-2958.1994.tb00295.x
  • Uliczka F, Pisano F, Schaake J, et al. Unique cell adhesion and invasion properties of Yersinia enterocolitica O: 3, the most frequent cause of human yersiniosis. PLOS Pathog. 2011;7(7):e1002117. doi: 10.1371/journal.ppat.1002117
  • Grassl G, Bohn E, Muller Y, et al. Interaction of Yersinia enterocolitica with epithelial cells: invasin beyond invasion. Int J Med Microbiol. 2003;293(1):41–54. doi: 10.1078/1438-4221-00243
  • Yang Y, Isberg R. Cellular internalization in the absence of invasin expression is promoted by the Yersinia pseudotuberculosis yadA product. Infect Immun. 1993;61(9):3907–13. doi: 10.1128/iai.61.9.3907-3913.1993
  • Pepe J, Miller V. Yersinia enterocolitica invasin: a primary role in the initiation of infection. Proc Natl Acad Sci U S A. 1993;90(14):6473–7. doi: 10.1073/pnas.90.14.6473
  • Fasciano A, Dasanayake G, Estes M, et al. Yersinia pseudotuberculosis YopE prevents uptake by M cells and instigates M cell extrusion in human ileal enteroid-derived monolayers. Gut Microbes. 2021;13(1):1988390. doi: 10.1080/19490976.2021.1988390
  • Rosqvist R, Forsberg A, Rimpilainen M, et al. The cytotoxic protein YopE of Yersinia obstructs the primary host defence. Molecular Microbiology. 1990;4(4):657–667. doi: 10.1111/j.1365-2958.1990.tb00635.x
  • Cornelis G. Yersinia type III secretion: send in the effectors. J Cell Bio. 2002;158(3):401–8. doi: 10.1083/jcb.200205077
  • Mehigh R, Sample A, Brubaker R. Expression of the low calcium response in Yersinia pestis. Microb Pathog. 1989;6(3):203–17. doi: 10.1016/0882-4010(89)90070-3
  • Yother J, Chamness T, Goguen J. Temperature-controlled plasmid regulon associated with low calcium response in Yersinia pestis. J Bacteriol. 1986;165(2):443–7. doi: 10.1128/jb.165.2.443-447.1986
  • Goguen J, Yother J, Straley S. Genetic analysis of the low calcium response in Yersinia pestis mu d1 (ap lac) insertion mutants. J Bacteriol. 1984;160(3):842–8. doi: 10.1128/jb.160.3.842-848.1984
  • Plano G, Straley S. Mutations in yscC, yscD, and yscG prevent high-level expression and secretion of V antigen and yops in Yersinia pestis. J Bacteriol. 1995;177(13):3843–54. doi: 10.1128/jb.177.13.3843-3854.1995
  • Fowler J, Wulff C, Straley S, et al. Growth of calcium-blind mutants of Yersinia pestis at 37 °C in permissive Ca2+-deficient environments. Microbiology (Reading). 2009;155(8):2509–2521. doi: 10.1099/mic.0.028852-0
  • Yother J, Goguen J. Isolation and characterization of Ca2+blind mutants of Yersinia pestis. J Bacteriol. 1985;164(2):704–711. doi: 10.1128/jb.164.2.704-711.1985
  • Perry R, Brubaker R. Vwa+ phenotype of Yersinia enterocolitica. Infect Immun. 1983;40(1):166–71. doi: 10.1128/iai.40.1.166-171.1983
  • Marketon M, DePaolo R, DeBord K, et al. Plague bacteria target immune cells during infection. Science. 2005;309(5741):1739–41. doi: 10.1126/science.1114580
  • Bohme K, Steinmann R, Kortmann J, et al. Concerted actions of a thermo-labile regulator and a unique intergenic RNA thermosensor control Yersinia virulence. PLOS Pathog. 2012;8(2):e1002518. doi: 10.1371/journal.ppat.1002518
  • Hoe N, Goguen J. Temperature sensing in Yersinia pestis: translation of the LcrF activator protein is thermally regulated. J Bacteriol. 1993;174(24):7901–7909. doi: 10.1128/jb.175.24.7901-7909.1993
  • Schwiesow L, Lam H, Dersch P, et al. Yersinia type III secretion system master regulator lcrF. J Bacteriol. 2015;198(4):604–614. doi: 10.1128/JB.00686-15
  • Garrity-Ryan L, Kim O, Balada-Llasat J, et al. Small molecule inhibitors of LcrF, a Yersinia pseudotuberculosis transcription factor, attenuate virulence and limit infection in a murine pneumonia model. Infect Immun. 2010;78(11):4683–90. doi: 10.1128/IAI.01305-09
  • King J, Schesser Bartra S, Plano G, et al. ExsA and LcrF recognize similar consensus binding sites, but differences in their oligomeric state influence interactions with promoter DNA. J Bacteriol. 2013;195(24):5639–50. doi: 10.1128/JB.00990-13
  • Jackson M, Silva-Herzog E, Plano G. The ATP-dependent ClpXP and lon proteases regulate expression of the Yersinia pestis type III secretion system via regulated proteolysis of YmoA, a small histone-like protein. Mol Microbiol. 2004;54(5):1364–78. doi: 10.1111/j.1365-2958.2004.04353.x
  • Rohde J, Fox J, Minnich S. Thermoregulation in Yersinia enterocolitica is coincident with changes in DNA supercoiling. Mol Microbiol. 1994;12(2):187–99. doi: 10.1111/j.1365-2958.1994.tb01008.x
  • Worrall L, Majewski D, Strynadka N. Type III secretion systems of the bacterial flagellum and injectisome. Ann Rev Microbiol. 2023;77(1):669–698. doi: 10.1146/annurev-micro-032521-025503
  • Mueller C, Broz P, Muller S, et al. The V-Antigen of Yersinia forms a distinct structure at the tip of injectisome needles. Science. 2005;310(5748):674–676. doi: 10.1126/science.1118476
  • Hayes C, Aoki S, Low D. Bacterial contact-dependent delivery systems. Ann Rev Genet. 2010;44(1):71–90. doi: 10.1146/annurev.genet.42.110807.091449
  • Journet L, Agrain C, Broz P, et al. The needle length of bacterial injectisomes is determined by a molecular ruler. Science. 2003;302(5651):1757–60. doi: 10.1126/science.1091422
  • Payne P, Straley S. YscP of Yersinia pestis is a secreted component of the yop secretion system. J Bacteriol. 1999;181(9):2852–62. doi: 10.1128/JB.181.9.2852-2862.1999
  • Agrain C, Sorg I, Paroz C, et al. Secretion of YscP from Yersinia enterocolitica is essential to control the length of the injectisome needle but not to change the type III secretion substrate specificity. Mol Microbiol. 2005;57(5):1415–27. doi: 10.1111/j.1365-2958.2005.04758.x
  • Bjornfot A, Lavander M, Forsberg A, et al. Autoproteolysis of YscU of Yersinia pseudotuberculosis is important for regulation of expression and secretion of Yop proteins. J Bacteriol. 2009;191(13):4259–4267. doi: 10.1128/JB.01730-08
  • Williams A, Straley S. YopD of Yersinia pestis plays a role in negative regulation of the low-calcium response in addition to its role in translocation of yops. J Bacteriol. 1998;180(2):350–358. doi: 10.1128/JB.180.2.350-358.1998
  • Anderson D, Ramamurthi K, Tam C, et al. YopD and LcrH regulate expression of Yersinia enterocolitica YopQ by a posttranscriptional mechanism and bind to yopQ RNA. J Bacteriol. 2002;184(5):1287–95. doi: 10.1128/JB.184.5.1287-1295.2002
  • Chen Y, Anderson D. Expression hierarchy in the Yersinia type III secretion system established through YopD recognition of RNA. Mol Microbiol. 2011;80(4):966–80. doi: 10.1111/j.1365-2958.2011.07623.x
  • Anderson D, Scheewind O. A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. Science. 1997;278(5340):1140–1143. doi: 10.1126/science.278.5340.1140
  • Anderson D, Schneewind O. Yersinia enterocolitica type III secretion: an mRNA signal that couples translation and secretion of YopQ. Mol Microbiol. 1999;31(4):1139–48. doi: 10.1046/j.1365-2958.1999.01254.x
  • Rimpilainen M, Forsberg A, Wolf-Watz H. A novel protein, LcrQ, involved in the low-calcium response of Yersinia pseudotuberculosis shows extensive homology to YopH. J Bacteriol. 1992;174(10):3355–63. doi: 10.1128/jb.174.10.3355-3363.1992
  • Cambronne E, Cheng L, Schneewind O. LcrQ/YscM1, regulators of the Yersinia yop virulon, are injected into host cells by a chaperone-dependent mechanism. Mol Microbiol. 2000;37(2):263–73. doi: 10.1046/j.1365-2958.2000.01974.x
  • Wulff-Strobel C, Williams A, Straley S. LcrQ and SycH function together at the ysc type III secretion system in Yersinia pestis to impose a hierarchy of secretion. Mol Microbiol. 2002;43(2):411–23. doi: 10.1046/j.1365-2958.2002.02752.x
  • Petersson J, Nordfelth R, Dubinina E, et al. Modulation of virulence factor expression by pathogen target cell contact. Science. 1996;273(5279):1183–1184. doi: 10.1126/science.273.5279.1231
  • Li Y, Li D, Shao H, et al. Plague in China 2014—all sporadic case report of pneumonic plague. BMC Infect Dis. 2016;16(1):1–8. doi: 10.1186/s12879-016-1403-8
  • Hoiczyk E, Blobel G. Polymerization of a single protein of the pathogen Yersinia enterocolitica into needles punctures eukaryotic cells. Proc Natl Acad Sci U S A. 2001;98(8):4669–74. doi: 10.1073/pnas.071065798
  • Rudolph M, Carsten A, Kulnik S, et al. Live imaging of Yersinia translocon formation and immune recognition in host cells. PloS Path. 2022;18(5):e1010251. doi: 10.1371/journal.ppat.1010251
  • Weeks S, Hill J, Friedlander A, et al. Anti-V antigen antibody protects macrophages from Yersinia pestis-induced cell death and promotes phagocytosis. Microb Path. 2002;32(5):227–37. doi: 10.1006/mpat.2002.0498
  • Sarker M, Neyt C, Stainier I, et al. The Yersinia Yop virulon: LcrV is required for extrusion of the translocators YopB and YopD. J Bacteriol. 1998;180(5):1207–14. doi: 10.1128/JB.180.5.1207-1214.1998
  • Hakansson S, Bergman T, Vanooteghem J, et al. YopB and YopD constitute a novel class of Yersinia Yop proteins. Infect Immun. 1993;61(1):71–80. doi: 10.1128/iai.61.1.71-80.1993
  • Hakansson S, Schesser K, Persson C, et al. The YopB protein of Yersinia pseudotuberculosis is essential for the translocation of Yop effector proteins across the target cell plasma membrane and displays a contact-dependent membrane disrupting activity. EMBO J. 1996;15(21):5812–23. doi: 10.1002/j.1460-2075.1996.tb00968.x
  • Nordfelth R, Wolf-Watz H, Finlay BB. YopB of Yersinia enterocolitica is essential for YopE translocation. Infect Immun. 2001;69(5):3516–8. doi: 10.1128/IAI.69.5.3516-3518.2001
  • Costa T, Amer A, Farag S, et al. Type III secretion translocon assemblies that attenuate Yersinia virulence. Cell Microbiol. 2013;15(7):1088–110. doi: 10.1111/cmi.12100
  • Osei-Owusu P, Charlton T, Kim H, et al. FPR1 is the plague receptor on host immune cells. Nature. 2019;574(57):62. doi: 10.1038/s41586-019-1570-z
  • Yang D, Chen Q, Le Y, et al. Differential regulation of formyl peptide receptor-like 1 expression during the differentiation of monocytes to dendritic cells and macrophages. J Immunol. 2001;166(6):4092–8. doi: 10.4049/jimmunol.166.6.4092
  • Daniel C, Dewitte A, Poiret S, et al. Polymorphism in the Yersinia LcrV antigen enables immune escape from the protection conferred by an LcrV-secreting Lactococcus lactis in a pseudotuberculosis mouse model. Front Immunol. 2019;10:1830. doi: 10.3389/fimmu.2019.01830
  • DiMezzo T, Ruthel G, Brueggemann E, et al. In vitro intracellular trafficking of virulence antiben during infection by Yersinia pestis. PloS One. 2009;4(7):e6281. doi: 10.1371/journal.pone.0006281
  • Fields K, Straley S, Burns DL. LcrV of Yersinia pestis enters infected eukaryotic cells by a virulence plasmid-independent mechanism. Infect Immun. 1999;67(9):4801–4813. doi: 10.1128/IAI.67.9.4801-4813.1999
  • Godlee C, Holden D. Transmembrane substrates of type three secretion system injectisomes. Micobiol. 2023;169(1):001292. doi: 10.1099/mic.0.001292
  • Brodsky I, Palm N, Sadanand S, et al. A /Yersinia effector protein promotes virulence by preventing inflammasome recognition of the type III secretion system. Cell Host Microbe. 2010;7(5):376–87. doi: 10.1016/j.chom.2010.04.009
  • Trosky J, Liverman A, Orth K. Yersinia outer proteins: Yops. Cell Microbiol. 2008;10(3):557–65. doi: 10.1111/j.1462-5822.2007.01109.x
  • Pha K, Navarro L. Yersinia type III effectors perturb host innate immune responses. World J Biol Chem. 2016;7(1):1–13. doi: 10.4331/wjbc.v7.i1.1
  • Ryndak M, Chung H, London E, et al. Role of predicted transmembrane domains for type III translocation, pore formation, and signaling by the Yersinia pseudotuberculosis YopB protein. Infect Immun. 2005;73(4):2433–43. doi: 10.1128/IAI.73.4.2433-2443.2005
  • Mattei P, Faudry E, Job V, et al. Membrane targeting and pore formation by the type III secretion system translocon. FEBS J. 2011;278(3):414–26. doi: 10.1111/j.1742-4658.2010.07974.x
  • Guichon A, Hersh D, Smith M, et al. Structure-function analysis of the Shigella virulence factor IpaB. J Bacteriol. 2001;183(4):1269–76. doi: 10.1128/JB.183.4.1269-1276.2001
  • Sarhan J, Liu B, Muendlein H, et al. Caspase-8 induces cleavage of gasdermin D to elicit pyroptosis during Yersinia infection. Proc Natl Acad Sci. 2018;115(46):e10888–e97. doi: 10.1073/pnas.1809548115
  • DeBord K, Lee V, Schneewind O. Roles of LcrG and LcrV during type III targeting of effector yops by Yersinia enterocolitica. J Bacteriol. 2001;183(15):4588–98. doi: 10.1128/JB.183.15.4588-4598.2001
  • Dewoody R, Merritt P, Marketon M. YopK controls both rate and fidelity of Yop translocation. Mol Microbiol. 2013;87(2):301–17. doi: 10.1111/mmi.12099
  • Veenendaal A, Hodgkinson J, Schwarzer L, et al. The type III secretion system needle tip complex mediates host cell sensing and translocon insertion. Mol Microbiol. 2007;63(6):1719–30. doi: 10.1111/j.1365-2958.2007.05620.x
  • Straley S, Cibull M. Differential clearance and host-pathogen interactions of YopE- and YopK-YopL- Yersinia pestis in BALB/c mice. Infect Immun. 1989;57(4):1200–10. doi: 10.1128/iai.57.4.1200-1210.1989
  • Logsdon L, Mecsas J. Requirement of the Yersinia pseudotuberculosis effectors YopH and YopE in colonization and persistence in intestinal and lymph tissues. Infect Immun. 2003;71(8):4595–607. doi: 10.1128/IAI.71.8.4595-4607.2003
  • Hall A. Rho family GTPases. Biochem Soc Trans. 2012;40(6):1378–82. doi: 10.1042/BST20120103
  • Rosqvist R, Forsberg A, Wolf-Watz H. Intracellular targeting of the Yersinia YopE cytotoxin in mammalian cells induces actin microfilament disruption. Infect Immun. 1991;59(12):4562–9. doi: 10.1128/iai.59.12.4562-4569.1991
  • Black D, Bliska J. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol Microbiol. 2000;37(3):515–27. doi: 10.1046/j.1365-2958.2000.02021.x
  • Van Aelst L, D’Souza-Schorey C. Rho GTPases and signaling networks. Genes Dev. 1997;11(18):2295–322. doi: 10.1101/gad.11.18.2295
  • Aepfelbacher M, Heesemann J. Modulation of rho GTPases and the actin cytoskeleton by Yersinia outer proteins (yops). Int J Med Microbiol. 2001;291(4):269–76. doi: 10.1078/1438-4221-00130
  • Medici N, Rashid M, Bliska J, et al. Characterization of pyrin dephosphorylation and inflammasome activation in macrophages as triggered by the Yersinia effectors YopE and YopT. Infect Immun. 2019;87(3). doi: 10.1128/IAI.00822-18
  • Trulzsch K, Sporleder T, Igwe E, et al. Contribution of the major secreted yops of Yersinia enterocolitica O: 8 to pathogenicity in the mouse infection model. Infect Immun. 2004;72(9):5227–5234. doi: 10.1128/IAI.72.9.5227-5234.2004
  • Cantwell A, Bubeck S, Dube P. YopH inhibits early pro-inflammatory cytokine responses during plague pneumonia. BMC Immunol. 2010;11(1):29–40. doi: 10.1186/1471-2172-11-29
  • Zhang Y, Bliska J. Role of toll-like receptor signaling in the apoptotic response of macrophages to Yersinia infection. Infect Immun. 2003;71(3):1513–9. doi: 10.1128/IAI.71.3.1513-1519.2003
  • Guan K, Dixon J. Bacterial and viral protein tyrosine phosphatases. Sem Cell Biol. 1993;4(6):389–396. doi: 10.1006/scel.1993.1046
  • Fallman M, Deleuil F, McGee K. Resistance to phagocytosis by Yersinia. International Journal Of Medical Microbiology. 2002;291(6–7):501–509. doi: 10.1078/1438-4221-00159
  • Andersson K, Carballeira N, Magnussen K, et al. YopH of Yersinia pseudotuberculosis interrupts early phosphotyrosine signalling associated with phagocytosis. Molecular Microbiology. 1996;20(5):1057–1069. doi: 10.1111/j.1365-2958.1996.tb02546.x
  • Hamid N, Gustavsson A, Andersson K, et al. YopH dephosphorylates cas and fyn-binding protein in macrophages. Microb Pathog. 1999;27(4):231–42. doi: 10.1006/mpat.1999.0301
  • Persson C, Carballeira N, Wolf-Watz H, et al. The PTPase YopH inhibits uptake of Yersinia, tyrosine phosphorylation of p130Cas and FAK, and the associated accumulation of these proteins in peripheral focal adhesions. EMBO J. 1997;16(9):2307–18. doi: 10.1093/emboj/16.9.2307
  • Persson C, Nordfelth R, Andersson K, et al. Localization of the Yersinia PTPase to focal complexes is an important virulence mechanism. Molecular Microbiology. 1999;33(4):828–838. doi: 10.1046/j.1365-2958.1999.01529.x
  • Rolan H, Durand E, Mecsas J. Identifying Yersinia YopH-targeted signal transduction pathways that impair neutrophil responses during in vivo murine infection. Cell Host Microbe. 2013;14(3):306–17. doi: 10.1016/j.chom.2013.08.013
  • Ruckdeschel K, Mannel O, Richter K, et al. Yersinia outer protein p of Yersinia enterocolitica simultaneously blocks the nuclear factor-κB pathway and exploits lipopolysaccharide signaling to trigger apoptosis in macrophages. The Journal Of Immunology. 2001;166(3):1823–1831. doi: 10.4049/jimmunol.166.3.1823
  • Orth K. Function of the Yersinia effector YopJ. Curr Opin Microbiol. 2002;5(1):38–43. doi: 10.1016/S1369-5274(02)00283-7
  • Zhou H, Monack D, Kayagaki N, et al. Yersinia virulence factor YopJ acts as a deubiquitinase to inhibit NF-κB activation. The Journal Of Experimental Medicine. 2005;202(10):1327–1332. doi: 10.1084/jem.20051194
  • Orth K, Xu Z, Mudgett M, et al. Disruption of signaling by Yersinia effector YopJ, a ubiquitin-like protein protease. Science. 2000;290(5496):1594–7. doi: 10.1126/science.290.5496.1594
  • Ma K, Ma W. YopJ family effectors promote bacterial infection through a unique acetyltransferase activity. Microbiol Mol Biol Rev. 2016;80(4):1011–27. doi: 10.1128/MMBR.00032-16
  • Sweet C, Conlon J, Golenbock D, et al. YopJ targets TRAF proteins to inhibit TLR-mediated NF-kB, MAPK and IRF3 signal transduction. Cell Microbiol. 2007;9(11):2700–2715. doi: 10.1111/j.1462-5822.2007.00990.x
  • Bliska J. Yersinia inhibits host signaling by acetylating MAPK kinases. ACS Chem Biol. 2006;1(6):349–51. doi: 10.1021/cb600261k
  • Monack D, Mecsas J, Ghori N, et al. Yersinia signals macrophages to undergo apoptosis and YopJ is necessary for this cell death. Proc Natl Acad Sci. 1997;94(19):10385–90. doi: 10.1073/pnas.94.19.10385
  • Orning P, Weng D, Starheim K, et al. Pathogen blockade of TAK1 triggers caspase-8–dependent cleavage of gasdermin D and cell death. Science. 2018;362(6418):1064–1069. doi: 10.1126/science.aau2818
  • Philip N, Brodsky I. Cell death programs in Yersinia immunity and pathogenesis. Front Cell Infect Microbiol. 2012;2:149. doi: 10.3389/fcimb.2012.00149
  • Shao F, Vacratsis P, Bao Z, et al. Biochemical characterization of the Yersinia YopT protease: cleavage site and recognition elements in rho GTPases. Proc Natl Acad Sci. 2003;100(3):904–9. doi: 10.1073/pnas.252770599
  • Iriarte M, Cornelis G. YopT, a new Yersinia Yop effector protein, affects the cytoskeleton of host cells. Mol Microbiol. 1998;29(3):915–29. doi: 10.1046/j.1365-2958.1998.00992.x
  • Wong K, Isberg R, Galan J. Yersinia pseudotuberculosis spatially controls activation and misregulation of host cell Rac1. PLOS Pathog. 2005;1(2):e16. doi: 10.1371/journal.ppat.0010016
  • Viboud G, Mejia E, Bliska J. Comparison of YopE and YopT activities in counteracting host signalling responses to Yersinia pseudotuberculosis infection. Cell Microbiol. 2006;8(9):1504–15. doi: 10.1111/j.1462-5822.2006.00729.x
  • Palace S, Proulx M, Szabady R, et al. Gain-of-function analysis reveals important virulence roles for the Yersinia pestis type III secretion system effectors YopJ, YopT, and YpkA. Infect Immun. 2018;86(9):e00318–18. doi: 10.1128/IAI.00318-18
  • Galyov E, Hakansson S, Wolf-Watz H. Characterization of the operon encoding the YpkA Ser/Thr protein kinase and the YopJ protein of Yersinia pseudotuberculosis. J Bacteriol. 1994;176(15):4543–8. doi: 10.1128/jb.176.15.4543-4548.1994
  • Juris S, Rudolph A, Huddler D, et al. A distinctive role for the Yersinia protein kinase: actin binding, kinase activation, and cytoskeleton disruption. Proc Natl Acad Sci U S A. 2000;97(17):9431–6. doi: 10.1073/pnas.170281997
  • Barz C, Abahji T, Trulzsch K, et al. The Yersinia Ser/Thr protein kinase YpkA/YopO directly interacts with the small GTPases RhoA and rac-1. FEBS Lett. 2000;482(1–2):139–43. doi: 10.1016/S0014-5793(00)02045-7
  • Wiley D, Nordfeldth R, Rosenzweig J, et al. The Ser/Thr kinase activity of the Yersinia protein kinase a (YpkA) is necessary for full virulence in the mouse, mollifying phagocytes, and disrupting the eukaryotic cytoskeleton. Microb Pathog. 2006;40(5):234–43. doi: 10.1016/j.micpath.2006.02.001
  • Navarro L, Koller A, Nordfelth R, et al. Identification of a molecular target for the Yersinia protein kinase A. Mol Cell. 2007;26(4):465–77. doi: 10.1016/j.molcel.2007.04.025
  • Offermanns S, Toombs C, Hu Y, et al. Defective platelet activation in Gαq-deficient mice. Nature. 1997;389(6647):183–186. doi: 10.1038/38284
  • LaRock C, Cookson B. The Yersinia virulence effector YopM binds caspase-1 to arrest inflammasome assembly and processing. Cell Host Microbe. 2012;12(6):799–805. doi: 10.1016/j.chom.2012.10.020
  • Ratner D, Orning M, Starheim K, et al. Manipulation of interleukin-1β and interleukin-18 production by Yersinia pestis effectors YopJ and YopM and redundant impact on virulence. Journal Of Biological Chemistry. 2016;291(19):9894–9905. doi: 10.1074/jbc.M115.697698
  • Schoberle T, Chung L, McPhee J, et al. Uncovering an important role for YopJ in the inhibition of caspase-1 in activated macrophages and promoting Yersinia pseudotuberculosis virulence. Infect Immun. 2016;84(4):1062–72. doi: 10.1128/IAI.00843-15
  • Hentschke M, Berneking L, Belmar Campos C, et al. Yersinia virulence factor YopM induces sustained RSK activation by interfering with dephosphorylation. PloS One. 2010;5(10):e13165. doi: 10.1371/journal.pone.0013165
  • McDonald C, Vacratsis P, Bliska J, et al. The Yersinia virulence factor YopM forms a novel protein complex with two cellular kinases. J Biol Chem. 2003;278(20):18514–23. doi: 10.1074/jbc.M301226200
  • Malik H, Bliska J. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev. 2020;297(1):96–107. doi: 10.1111/imr.12907
  • McPhee J, Mena P, Zhang Y, et al. Interleukin-10 induction is an important virulence function of the Yersinia pseudotuberculosis type III effector YopM. Infect Immun. 2012;80(7):2519–27. doi: 10.1128/IAI.06364-11
  • Berneking L, Schnapp M, Rumm A, et al. Immunosuppressive Yersinia effector YopM binds DEAD box helicase DDX3 to control ribosomal S6 kinase in the nucleus of host cells. PLOS Pathog. 2016;12(6):e1005660. doi: 10.1371/journal.ppat.1005660
  • Ye Z, Uittenbogaard A, Cohen D, et al. Distinct CCR2+Gr1+cells control growth of the Yersinia pestis ΔyopM mutant in liver and spleen during systemic plague. Infect Immun. 2011;79(2):674–687. doi: 10.1128/IAI.00808-10
  • Ye Z, Kerschen E, Cohen D, et al. Gr1+ cells control growth of YopM-negative Yersinia pestis during systemic plague. Infect Immun. 2009;77(9):3791–806. doi: 10.1128/IAI.00284-09
  • McCoy M, Marre M, Lesser C, et al. The C-terminal tail of Yersinia pseudotuberculosis YopM is critical for interacting with RSK1 and for virulence. Infect Immun. 2010;78(6):2584–98. doi: 10.1128/IAI.00141-10
  • Holmstrom A, Rosqvist R, Wolf-Watz H, et al. Virulence plasmid-encoded YopK is essential for Yersinia pseudotuberculosis to cause systemic infection in mice. Infect Immun. 1995;63(6):2269–76. doi: 10.1128/iai.63.6.2269-2276.1995
  • Zauberman A, Velan B, Mamroud E, et al. Disparity between Yersinia pestis and Yersinia enterocolitica O: 8 in YopJ/YopP-dependent functions. Adv Exp Med Biol. 2007;603:312–320.
  • Peters K, Dhariwala M, Hughes-Hanks J, et al. Early apoptosis of macrophages modulated by injection of Yersinia pestis YopK promotes progression of primary pneumonic plague. PloS Path. 2013;9(4):e1003324. doi: 10.1371/journal.ppat.1003324
  • Dewoody R, Merritt P, Houppert A, et al. YopK regulates the Yersinia pestis type III secretion system from within host cells. Mol Microbiol. 2011;79(6):1445–61. doi: 10.1111/j.1365-2958.2011.07534.x
  • Holmstrom A, Pettersson J, Rosqvist R, et al. YopK of Yersinia pseudotuberculosis controls translocation of Yop effectors across the eukaryotic cell membrane. Molecular Microbiology. 1997;24(1):73–91. doi: 10.1046/j.1365-2958.1997.3211681.x
  • Thorslund S, Edgren T, Pettersson J, et al. The RACK1 signaling scaffold protein selectively interacts with Yersinia pseudotuberculosis virulence function. PloS One. 2011;6(2):e16784. doi: 10.1371/journal.pone.0016784
  • Aili M, Isaksson E, Carlsson S, et al. Regulation of Yersinia yop-effector delivery by translocated YopE. Int J Med Microbiol. 2008;298(3–4):183–92. doi: 10.1016/j.ijmm.2007.04.007
  • Ruckdeschel K, Pfaffinger G, Trulzsch K, et al. The proteasome pathway destabilizes Yersinia outer protein E and represses its antihost cell activities. The Journal Of Immunology. 2006;176(10):6093–6102. doi: 10.4049/jimmunol.176.10.6093
  • Gaus K, Hentschke M, Czymmeck N, et al. Destabilization of YopE by the ubiquitin-proteasome pathway fine-tunes Yop delivery into host cells and facilitates systemic spread of Yersinia enterocolitica in host lymphoid tissue. Infect Immun. 2011;79(3):1166–1175. doi: 10.1128/IAI.00694-10
  • Brodsky I, Medzhitov R, Isberg RR. Reduced secretion of YopJ by Yersinia limits in vivo cell death but enhances bacterial virulence. PLOS Pathog. 2008;4(5):1–14. doi: 10.1371/journal.ppat.1000067
  • Zauberman A, Tidhar A, Levy Y, et al. Yersinia pestis endowed with increased cytotoxicity is avirulent in a bubonic plague model and induces rapid protection against pneumonic plague. PloS One. 2009;4(6):e5938. doi: 10.1371/journal.pone.0005938
  • Peterson L, Philip N, Dillon C, et al. Cell-extrinsic TNF collaborates with TRIF signaling to promote Yersinia-induced apoptosis. J Immunol. 2016;197(10):4110–7. doi: 10.4049/jimmunol.1601294
  • Mares C, Lugo F, Albataineh M, et al. Heightened virulence of Yersinia is associated with decreased function of the YopJ protein. Infect Immun. 2021;89(12). doi: 10.1128/IAI.00430-21
  • Zheng Y, Lilo S, Brodsky I, et al. A Yersinia effector with enhanced inhibitory activity on the NF-κB pathway activates the NLRP3/ASC/caspase-1 inflammasome in macrophages. PloS Path. 2011;7(4):e1002026. doi: 10.1371/journal.ppat.1002026
  • Lemaitre N, Sebbane F, Long D, et al. Yersinia pestis YopJ suppresses tumor necrosis factor alpha induction and contributes to apoptosis of immune cells in the lymph node but is not required for virulence in a rat model of bubonic plague. Infect Immun. 2006;74(9):5126–5131. doi: 10.1128/IAI.00219-06
  • Monack D, Mecsas J, Bouley D, et al. Yersinia-induced apoptosis in vivo aids in the establishment of a systemic infection of mice. J Exp Med. 1998;188(11):2127–37. doi: 10.1084/jem.188.11.2127
  • Huang Y, Xu W, Zhou R. NLRP3 inflammasome activation and cell death. Cell Mol Immunol. 2021;18(9):2114–27. doi: 10.1038/s41423-021-00740-6
  • Nakajima R, Brubaker R. Association between virulence of Yersinia pestis and suppression of gamma interferon and tumor necrosis factor alpha. Infect Immun. 1993;61(1):23–31. doi: 10.1128/iai.61.1.23-31.1993
  • Bohn E, Sing A, Zumbihl R, et al. IL-18 (IFN-γ-inducing factor) regulates early cytokine production in, and promotes resolution of, bacterial infection in mice. The Journal Of Immunology. 1998;160(1):299–307. doi: 10.4049/jimmunol.160.1.299
  • Dave M, Silva J, Elicabe R, et al. Yersinia enterocolitica YopH-deficient strain activates neutrophil recruitment to peyer’s patches and promotes clearance of the virulent strain. Infect Immun. 2016;84(11):3172–81. doi: 10.1128/IAI.00568-16
  • Chung L, Park Y, Zheng Y, et al. The Yersinia virulence factor YopM hijacks host kinases to inhibit type III effector-triggered activation of the pyrin inflammasome. Cell Host Microbe. 2016;20(3):296–306. doi: 10.1016/j.chom.2016.07.018
  • Zheng Y, Lilo S, Mena P, et al. YopJ-induced caspase-1 activation in Yersinia-infected macrophages: Independent of Apoptosis, linked to necrosis, dispensable for innate Host defense. PloS One. 2012;7(4):e36019. doi: 10.1371/journal.pone.0036019
  • Sivaraman V, Pechous R, Stasulli N, et al. Yersinia pestis Activates Both IL-1β and IL-1 Receptor Antagonist to Modulate Lung Inflammation during Pneumonic Plague. PLOS Pathog. 2015;11(3):e1004688. doi: 10.1371/journal.ppat.1004688
  • Prior J, Parkhill J, Hitchen P, et al. The failure of different strains of Yersinia pestis to produce lipopolysaccharide O-antigen under different growth conditions is due to mutations in the O-antigen gene cluster. FEMS Microbiol Lett. 2001;197(2):229–33. doi: 10.1111/j.1574-6968.2001.tb10608.x
  • Lerouge I, Vanderleyden J. O-antigen structural variation: mechanisms and possible roles in animal/plant–microbe interactions. FEMS Microbiol Rev. 2002;26(1):17–47. doi: 10.1111/j.1574-6976.2002.tb00597.x
  • Fang X, Kang L, Qiu Y, et al. Yersinia enterocolitica in Crohn’s disease. Front Cell Infect Microbiol. 2023;13:1129996. doi: 10.3389/fcimb.2023.1129996
  • Kawahara K, Tsukano H, Watanabe H, et al. Modification of the structure and activity of lipid a in Yersinia pestis lipopolysaccharide by growth temperature. Infect Immun. 2002;70(8):4092–8. doi: 10.1128/IAI.70.8.4092-4098.2002
  • Knirel Y, Anisimov A, Kislichkina A, et al. Lipopolysaccharide of the Yersinia pseudotuberculosis complex. Biomolecules. 2021;11(10):11. doi: 10.3390/biom11101410
  • Montminy S, Khan N, McGrath S, et al. Virulence factors of Yersinia pestis are overcome by a strong lipopolysaccharide response. Nat Immunol. 2006;7(10):1066–73. doi: 10.1038/ni1386
  • Rebeil R, Ernst R, Gowen B, et al. Variation in lipid a structure in the pathogenic Yersiniae. Mol Microbiol. 2004;52(5):1363–73. doi: 10.1111/j.1365-2958.2004.04059.x
  • Rebeil R, Ernst R, Jarrett C, et al. Characterization of late acyltransferase genes of Yersinia pestis and their role in temperature-dependent lipid a variation. J Bacteriol. 2006;188(4):1381–8. doi: 10.1128/JB.188.4.1381-1388.2006
  • Reines M, Llobet E, Dahlstrom K, et al. Deciphering the acylation pattern of Yersinia enterocolitica lipid a. PloS Path. 2012;8(10):e1002978. doi: 10.1371/journal.ppat.1002978
  • Chandler C, Harberts E, Pelletier M, et al. Early evolutionary loss of the lipid a modifying enzyme PagP resulting in innate immune evasion in Yersinia pestis. Proc Natl Acad Sci USA. 2021;117(37):22984–22991. doi: 10.1073/pnas.1917504117
  • Reines M, Llobet E, Llompart C, et al. Molecular basis of Yersinia enterocolitica temperature-dependent resistance to antimicrobial peptides. J Bacteriol. 2012;194(12):3173–88. doi: 10.1128/JB.00308-12
  • Valtuena A, Neumann G, Spyrou M, et al. Stone age Yersinia pestis genomes shed light on the early evolution, diversity, and eology of plague. Proc Natl Acad Sci. 2022;119:e2116722119. doi: 10.1073/pnas.2116722119
  • Minnich S, Rohde H. A rationale for repression and/or loss of motility by pathogenic Yersinia in the mammalian host. Adv Exp Med Biol. 2007;603:298–310.
  • Kapatral V, Olson J, Pepe J, et al. Temperature-dependent regulation of Yersinia enterocolitica class III flagellar genes. Mol Microbiol. 1996;19(5):1061–71. doi: 10.1046/j.1365-2958.1996.452978.x
  • Price P, Jin J, Goldman W. Pulmonary infection by Yersinia pestis rapidly establishes a permissive environment for microbial proliferation. Proc Natl Acad Sci, USA. 2012;109(8):3083–8. doi: 10.1073/pnas.1112729109
  • Pechous R, Sivaraman V, Stasulli N, et al. Pneumonic plague: the darker side of Yersinia pestis. Trends Microbiol. 2016;24(3):190–7. doi: 10.1016/j.tim.2015.11.008
  • Olson R, Dhariwala M, Mitchell W, et al. Modification of the pulmonary MyD88 inflammatory response underlies the role of the Yersinia pestis pigmentation locus in primary pneumonic plague. Infect Immun. 2021;89(3):e00595–20. doi: 10.1128/IAI.00595-20
  • Lee-Lewis H, Anderson D. Absence of inflammation and pneumonia during infection with nonpigmented Yersinia pestis reveals a new role for the pgm locus in pathogenesis. Infect Immun. 2010;78(1):220–230. doi: 10.1128/IAI.00559-09
  • Kawai T, Akira S. Pathogen recognition with toll-like receptors. Curr Op Immunol. 2005;17(4):338–344. doi: 10.1016/j.coi.2005.02.007
  • Ruckdeschel K, Pfaffinger G, Haase R, et al. Signaling of Apoptosis through TLRs critically involves toll/IL-1 receptor domain-containing adapter inducing IFN-β, but not MyD88, in bacteria-infected murine macrophages. The Journal Of Immunology. 2004;173(5):3320–3328. doi: 10.4049/jimmunol.173.5.3320
  • Sotolongo J, Espana C, Echeverry A, et al. Host innate recognition of an intestinal bacterial pathogen induces TRIF-dependent protective immunity. J Exp Med. 2011;208(13):2705–16. doi: 10.1084/jem.20110547
  • Rosadini C, Zanoni I, Odendall C, et al. A single bacterial immune evasion strategy dismantles both MyD88 and TRIF signaling pathways downstream of TLR4. Cell Host Microbe. 2015;18(6):682–93. doi: 10.1016/j.chom.2015.11.006
  • Diebold S, Kaisho T, Hemmi H, et al. Innate antiviral responses by means of TLR7-mediated recognition of single-stranded RNA. Science. 2004;303:1529–1531. doi: 10.1126/science.1093616
  • Dhariwala M, Olson R, Anderson D, et al. Induction of type I interferon through a noncanonical Toll-like receptor 7 pathway during Yersinia pestis infection. Infect Immun. 2017;85(11):e00570–17. doi: 10.1128/IAI.00570-17
  • Patel A, Lee-Lewis H, Hughes-Hanks J, et al. Opposing roles for interferon regulatory factor-3 (IRF-3) and type I interferon signaling during plague. PLOS Pathog. 2012;8(7):e1002817. doi: 10.1371/journal.ppat.1002817
  • Ke Y, Chen Z, Yang R. Yersinia pestis: mechanisms of entry into and resistance to the host cell. Front Cell Infect Microbiol. 2013;3:106. doi: 10.3389/fcimb.2013.00106
  • Tsukano H, Kura F, Inoue S, et al. Yersinia pseudotuberculosis blocks the phagosomal acidification of B10.A mouse macrophages through the inhibition of vacuolar H+-ATPase activity. Microbial Pathogenesis. 1999;27(4):253–263. doi: 10.1006/mpat.1999.0303
  • Pujol C, Bliska J. The ability to replicate in macrophages is conserved between Yersinia pestis and Yersinia pseudotuberculosis. Infect Immun. 2003;71(10):5892–9. doi: 10.1128/IAI.71.10.5892-5899.2003
  • Grabenstein J, Marceau M, Pujol C, et al. The response regulator PhoP of Yersinia pseudotuberculosis is important for replication in macrophages and for virulence. Infect Immun. 2004;72(9):4973–4984. doi: 10.1128/IAI.72.9.4973-4984.2004
  • Vadyvaloo V, Viall A, Jarrett C, et al. Role of the PhoP–PhoQ gene regulatory system in adaptation of Yersinia pestis to environmental stress in the flea digestive tract. Microbiology (Reading). 2015;161(6):1198–1210. doi: 10.1099/mic.0.000082
  • Pujol C, Klein K, Romanov G, et al. Yersinia pestis can reside in autophagosomes and avoid xenophagy in murine macrophages by preventing vacuole acidification. Infect Immun. 2009;77(6):2251–61. doi: 10.1128/IAI.00068-09
  • Connor M, Pulsifer A, Chung D, et al. Yersinia pestis targets the host endosome recycling pathway during the biogenesis of the Yersinia-containing vacuole to avoid killing by macrophages. MBio. 2018;9(1). doi: 10.1128/mBio.01800-17
  • Pujol C, Grabenstein J, Perry R, et al. Replication of Yersinia pestis in interferon γ-activated macrophages requires ripA , a gene encoded in the pigmentation locus. Proc Natl Acad Sci USA. 2005;102(36):12909–12914. doi: 10.1073/pnas.0502849102
  • Pujol C, Bliska J. Turning Yersinia pathogenesis outside in: subversion of macrophage function by intracellular yersiniae. Clin Immunol. 2005;114(3):216–26. doi: 10.1016/j.clim.2004.07.013
  • Bozue J, Mou S, Moody K, et al. The role of the phoPQ operon in the pathogenesis of the fully virulent CO92 strain of Yersinia pestis and the IP32953 strain of Yersinia pseudotuberculosis. Microb Pathog. 2011;50(6):314–21. doi: 10.1016/j.micpath.2011.02.005
  • Fisher M, Castillo C, Mecsas J. Intranasal inoculation of mice with Yersinia pseudotuberculosis causes a lethal lung infection that is dependent on Yersinia outer proteins andPhoP. Infect Immun. 2007;75(1):429–442. doi: 10.1128/IAI.01287-06
  • Virgin H, Levine B. Autophagy genes and immunity. Nat Immunol. 2009;10(5):461–570. doi: 10.1038/ni.1726
  • Eisele N, Brown C, Anderson D. Phagocytes and humoral immunity to pneumonic plague. Adv Exp Med Biol. 2012;954:165–171.
  • Moreau K, Lacas-Gervais S, Fujita N, et al. Autophagosomes can support Yersinia pseudotuberculosis replication in macrophages. Cell Microbiol. 2010;12(8):1108–23. doi: 10.1111/j.1462-5822.2010.01456.x
  • Lopez M, Schimmeck H, Gopengieber J, et al. Activation of the macroautophagy pathway by Yersinia enterocolitica promotes intracellular multiplication and egress of yersiniae from epithelial cells. Cellular Microbiology. 2019;21(9):e13046. doi: 10.1111/cmi.13046