684
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Autophagy-related protein PlATG2 regulates the vegetative growth, sporangial cleavage, autophagosome formation, and pathogenicity of peronophythora litchii

, , , , , & show all
Article: 2322183 | Received 23 Aug 2023, Accepted 18 Feb 2024, Published online: 04 Mar 2024

References

  • Kamoun S. Molecular genetics of pathogenic oomycetes. Eukaryot Cell. 2003;2(2):191–13. doi: 10.1128/EC.2.2.191-199.2003
  • Kamoun S, Furzer O, Jones JD, et al. The top 10 oomycete pathogens in molecular plant pathology. Molecular Plant Pathology. 2015;16(4):413–434. doi: 10.1111/mpp.12190
  • Kao CW, Leu LS. Sporangium germination of peronophythora litchii, the causal organism of litchi downy blight. Mycologia. 1980;72(4):737–748. doi: 10.1080/00275514.1980.12021242
  • Wang HC, Sun HY, Stammler G, et al. Baseline and differential sensitivity of peronophythora litchii (lychee downy blight) to three carboxylic acid amide fungicides. Plant Pathology. 2009;58(3):571–576. doi: 10.1111/j.1365-3059.2008.01990.x
  • Xu L, Xue J, Wu P, et al. Antifungal activity of hypothemycin against peronophythora litchii in vitro and in vivo. J Agric Food Chem. 2013;61(42):10091–10095. doi: 10.1021/jf4030882
  • Carlsson SR, Simonsen A. Membrane dynamics in autophagosome biogenesis. J Cell Sci. 2015;128:193–205. doi: 10.1242/jcs.141036
  • Huang WP, Klionsky DJ. Autophagy in yeast: a review of the molecular machinery. Cell Struct Funct. 2002;27(6):409–420. doi: 10.1247/csf.27.409
  • Fukuda T, Furukawa K, Maruyama T, et al. Mitofissin: a novel mitochondrial fission protein that facilitates mitophagy. Autophagy. 2023a;19(11):1–3. doi: 10.1080/15548627.2023.2237343
  • Fukuda T, Furukawa K, Maruyama T, et al. The mitochondrial intermembrane space protein mitofissin drives mitochondrial fission required for mitophagy. Mol Cell. 2023b;83(12):2045–2058 e2049. doi: 10.1016/j.molcel.2023.04.022
  • Fukuda T, Kanki T. Atg43, a novel autophagy-related protein, serves as a mitophagy receptor to bridge mitochondria with phagophores in fission yeast. Autophagy. 2021;17(3):826–827. doi: 10.1080/15548627.2021.1874662
  • Suzuki K, Ohsumi Y. Current knowledge of the pre-autophagosomal structure (PAS). FEBS Lett. 2010;584(7):1280–1286. doi: 10.1016/j.febslet.2010.02.001
  • Jiang Z, Zhu L, Wang Q, et al. Autophagy-related 2 regulates chlorophyll degradation under abiotic stress conditions in Arabidopsis. Int J Mol Sci. 2020;21(12):4515. doi: 10.3390/ijms21124515
  • Obara K, Sekito T, Niimi K, et al. The Atg18-Atg2 complex is recruited to autophagic membranes via phosphatidylinositol 3-phosphate and exerts an essential function. J Biol Chem. 2008;283(35):23972–23980. doi: 10.1074/jbc.M803180200
  • Suzuki K, Kubota Y, Sekito T, et al. Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells. 2007;12(2):209–218. doi: 10.1111/j.1365-2443.2007.01050.x
  • Kotani T, Kirisako H, Koizumi M, et al. The Atg2-Atg18 complex tethers pre-autophagosomal membranes to the endoplasmic reticulum for autophagosome formation. Proc Natl Acad Sci USA. 2018;115(41):10363–10368. doi: 10.1073/pnas.1806727115
  • Feng Y, He D, Yao Z, et al. The machinery of macroautophagy. Cell Res. 2014;24(1):24–41. doi: 10.1038/cr.2013.168
  • Gomez-Sanchez R, Rose J, Guimaraes R, et al. Atg9 establishes Atg2-dependent contact sites between the endoplasmic reticulum and phagophores. J Cell Bio. 2018;217(8):2743–2763. doi: 10.1083/jcb.201710116
  • Tang Z, Takahashi Y, He H, et al. TOM40 targets Atg2 to mitochondria-associated ER membranes for phagophore expansion. Cell Rep. 2019;28(7):1744–1757 e1745. doi: 10.1016/j.celrep.2019.07.036
  • Kang S, Shin KD, Kim JH, et al. Autophagy-related (ATG) 11, ATG9 and the phosphatidylinositol 3-kinase control ATG2-mediated formation of autophagosomes in arabidopsis. Plant Cell Rep. 2018;37(4):653–664. doi: 10.1007/s00299-018-2258-9
  • Luo M, Law KC, He Y, et al. Arabidopsis autophagy-related 2 is essential for ATG18a and ATG9 trafficking during autophagosome closure. Plant Physiol kiad. 2023;287(1):304–321. doi: 10.1093/plphys/kiad287
  • Mishra D. Closing the loop: three musketeers of autophagy-ATG2, ATG18a, and ATG9. Plant Physiol kiad. 2023;369(1):177–178. doi: 10.1093/plphys/kiad369
  • Asakura M, Ninomiya S, Sugimoto M, et al. Atg26-mediated pexophagy is required for host invasion by the plant pathogenic fungus Colletotrichum orbiculare. Plant Cell. 2009;21(4):1291–1304. doi: 10.1105/tpc.108.060996
  • Kershaw MJ, Talbot NJ. Genome-wide functional analysis reveals that infection-associated fungal autophagy is necessary for rice blast disease. Proc Natl Acad Sci U S A. 2009;106(37):15967–15972. doi: 10.1073/pnas.0901477106
  • Kikuma T, Ohneda M, Arioka M, et al. Functional analysis of the ATG8 homologue Aoatg8 and role of autophagy in differentiation and germination in aspergillus oryzae. Eukaryot Cell. 2006;5(8):1328–1336. doi: 10.1128/EC.00024-06
  • Lv W, Wang C, Yang N, et al. Genome-wide functional analysis reveals that autophagy is necessary for growth, sporulation, deoxynivalenol production and virulence in fusarium graminearum. Sci Rep. 2017;7(1):11062. doi: 10.1038/s41598-017-11640-z
  • Voigt O, Poggeler S. Autophagy genes Smatg8 and Smatg4 are required for fruiting-body development, vegetative growth and ascospore germination in the filamentous ascomycete sordaria macrospora. Autophagy. 2013;9(1):33–49. doi: 10.4161/auto.22398
  • Yue JY, Wang YJ, Jiao JL, et al. Silencing of ATG2 and ATG7 promotes programmed cell death in wheat via inhibition of autophagy under salt stress. Ecotoxicol Environ Saf. 2021;225:112761. doi: 10.1016/j.ecoenv.2021.112761
  • Zhao X, Feng W, Zhu X, et al. Conserved autophagy pathway contributes to stress tolerance and virulence and differentially controls autophagic flux upon nutrient starvation in Cryptococcus neoformans. Front Microbiol. 2019;10:2690. doi: 10.3389/fmicb.2019.02690
  • Yamauchi S, Mano S, Oikawa K, et al. Autophagy controls reactive oxygen species homeostasis in guard cells that is essential for stomatal opening. Proc Natl Acad Sci U S A. 2019;116(38):19187–19192. doi: 10.1073/pnas.1910886116
  • Yoshimoto K, Jikumaru Y, Kamiya Y, et al. Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell. 2009;21(9):2914–2927. doi: 10.1105/tpc.109.068635
  • Wang Y, Nishimura MT, Zhao T, et al. ATG2, an autophagy-related protein, negatively affects powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant J. 2011a;68(1):74–87. doi: 10.1111/j.1365-313X.2011.04669.x
  • Wang Y, Wu Y, Tang D. The autophagy gene, ATG18a, plays a negative role in powdery mildew resistance and mildew-induced cell death in Arabidopsis. Plant Signal Behav. 2011b;6(9):1408–1410. doi: 10.4161/psb.6.9.16967
  • Hashimi SM, Wu NN, Ran J, et al. Silencing autophagy-related gene 2 (ATG2) results in accelerated senescence and enhanced immunity in soybean. Int J Mol Sci. 2021;22(21):11749. doi: 10.3390/ijms222111749
  • Chen L, Zhang X, Wang W, et al. Network and role analysis of autophagy in Phytophthora sojae. Sci Rep. 2017;7(1):1879. doi: 10.1038/s41598-017-01988-7
  • Luo Q, Wang FX, Zhong NQ, et al. The role of autophagy during development of the oomycete pathogen phytophthora infestans. J Genet Genomics. 2014;41(4):225–228. doi: 10.1016/j.jgg.2014.03.004
  • Wang J, Zhou G, Huang W, et al. Autophagy-related gene PlAtg6a is involved in mycelial growth, asexual reproduction and tolerance to salt and oxidative stresses in Peronophythora litchii. Int J Mol Sci. 2022;23(3):1839. doi: 10.3390/ijms23031839
  • Qiu M, Li Y, Ye W, et al. A CRISPR/Cas9-mediated in situ complementation method for phytophthora sojae mutants. Mol Plant Pathol. 2021;22(3):373–381. doi: 10.1111/mpp.13028
  • Fang Y, Cui L, Gu B, et al. Efficient genome editing in the Oomycete Phytophthora sojae using CRISPR/Cas9. Curr Protoc Microbiol. 2017;44(1):21–21A 21 26. doi: 10.1002/cpmc.25
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using Real-Time Quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–408. doi: 10.1006/meth.2001.1262
  • Huang J, Xi P, Deng Y, et al. The mitogen-activated protein kinase PlMAPK2 is involved in zoosporogenesis and pathogenicity of Peronophythora litchii. Int J Mol Sci. 2021;22(7):3524. doi: 10.3390/ijms22073524
  • Lin L, Ye W, Wu J, et al. The MADS-box transcription factor PsMAD1 is involved in zoosporogenesis and pathogenesis of Phytophthora sojae. Front Microbiol. 2018;9:2259. doi: 10.3389/fmicb.2018.02259
  • Contento AL, Xiong Y, Bassham DC. Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J. 2005;42(4):598–608. doi: 10.1111/j.1365-313X.2005.02396.x
  • Hardham AR. Cell biology of plant-oomycete interactions. Cell Microbiol. 2007;9(1):31–39. doi: 10.1111/j.1462-5822.2006.00833.x
  • Sun J, Gao Z, Zhang X, et al. Transcriptome analysis of Phytophthora litchii reveals pathogenicity arsenals and confirms taxonomic status. PloS One. 2017;12(6):e0178245. doi: 10.1371/journal.pone.0178245
  • Blanco FA, Judelson HS. A bZIP transcription factor from Phytophthora interacts with a protein kinase and is required for zoospore motility and plant infection. Mol Microbiol. 2005;56(3):638–648. doi: 10.1111/j.1365-2958.2005.04575.x
  • Judelson HS, Blanco FA. The spores of Phytophthora: weapons of the plant destroyer. Nat Rev Microbiol. 2005;3(1):47–58. doi: 10.1038/nrmicro1064
  • Shintani T, Suzuki K, Kamada Y, et al. Apg2p functions in autophagosome formation on the perivacuolar structure. J Biol Chem. 2001;276(32):30452–30460. doi: 10.1074/jbc.M102346200
  • Wang CW, Kim J, Huang WP, et al. Apg2 is a novel protein required for the cytoplasm to vacuole targeting, autophagy, and pexophagy pathways. J Biol Chem. 2001;276(32):30442–30451. doi: 10.1074/jbc.M102342200
  • Velikkakath AK, Nishimura T, Oita E, et al. Mammalian Atg2 proteins are essential for autophagosome formation and important for regulation of size and distribution of lipid droplets. MboC. 2012;23(5):896–909. doi: 10.1091/mbc.e11-09-0785
  • Abeliovich H, Klionsky DJ. Autophagy in yeast: mechanistic insights and physiological function. Microbiol Mol Biol Rev. 2001;65(3):463–479. doi: 10.1128/MMBR.65.3.463-479.2001
  • Levine B, Klionsky DJ. Development by self-digestion: molecular mechanisms and biological functions of autophagy. Dev Cell. 2004;6(4):463–477. doi: 10.1016/S1534-5807(04)00099-1
  • Meijer AJ, Codogno P. Regulation and role of autophagy in mammalian cells. Int J Biochem Cell Biol. 2004;36(12):2445–2462. doi: 10.1016/j.biocel.2004.02.002
  • Kikuma T, Kitamoto K. Analysis of autophagy in aspergillus oryzae by disruption of Aoatg13, Aoatg4, and Aoatg15 genes. FEMS Microbiol Lett. 2011;316(1):61–69. doi: 10.1111/j.1574-6968.2010.02192.x
  • Pollack JK, Harris SD, Marten MR. Autophagy in filamentous fungi. Fungal Genet Biol. 2009;46(1):1–8. doi: 10.1016/j.fgb.2008.10.010
  • Veneault-Fourrey C, Barooah M, Egan M, et al. Autophagic fungal cell death is necessary for infection by the rice blast fungus. Science. 2006;312(5773):580–583. doi: 10.1126/science.1124550
  • Liu XH, Liu TB, Lin FC. Monitoring autophagy in Magnaporthe oryzae. Methods Enzymol. 2008;451:271–294.
  • Shi H, Yang Z, Huang J, et al. An effector of ‘candidatus liberibacter asiaticus’ manipulates autophagy to promote bacterial infection. J Exp Bot erad176. 2023a;74(15):4670–4684. doi: 10.1093/jxb/erad176
  • Shi J, Gong Y, Shi H, et al. ‘Candidatus liberibacter asiaticus’ secretory protein SDE3 inhibits host autophagy to promote huanglongbing disease in citrus. Autophagy. 2023b;1–17. doi: 10.1080/15548627.2023.2278414
  • Testi S, ML K, Allasia V, et al. An oomycete effector impairs autophagy in evolutionary distant organisms and favors host infection. Cold Spring Harbor Lab. 2019;697136. doi:10.1101/697136
  • Tyler BM. Phytophthora sojae: root rot pathogen of soybean and model oomycete. Mol Plant Pathol. 2007;8(1):1–8. doi: 10.1111/j.1364-3703.2006.00373.x