1,188
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Sneaky tactics: Ingenious immune evasion mechanisms of Bartonella

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Article: 2322961 | Received 18 Dec 2023, Accepted 20 Feb 2024, Published online: 05 Mar 2024

References

  • Deng H, Le Rhun D, Buffet JP, et al. Strategies of exploitation of mammalian reservoirs by Bartonella species. Vet Res. 2012;43(1):15. doi: 10.1186/1297-9716-43-15
  • Anderson BE, Neuman MA. Bartonella spp. as emerging human pathogens. Clin Microbiol Rev. 1997;10(2):203–18. doi: 10.1128/CMR.10.2.203
  • Chomel BB, Boulouis HJ, Breitschwerdt EB, et al. Ecological fitness and strategies of adaptation of bartonella species to their hosts and vectors. Vet Res. 2009;40(2):29. doi: 10.1051/vetres/2009011
  • Kaiser PO, Riess T, O’Rourke F, et al. Bartonella spp.: throwing light on uncommon human infections. Int J Med Microbiol. 2011;301(1):7–15. doi: 10.1016/j.ijmm.2010.06.004
  • Maguiña C, Guerra H, Ventosilla P. Bartonellosis. Clin Dermatol. 2009;27(3):271–80. doi: 10.1016/j.clindermatol.2008.10.006
  • Sackal C, Laudisoit A, Kosoy M, et al. Bartonella spp. And Rickettsia felis in fleas, democratic Republic of Congo. Emerg Infect Dis. 2008;14(12):1972–4. doi: 10.3201/eid1412.080610
  • Tea A, Alexiou-Daniel S, Arvanitidou M, et al. Occurrence of Bartonella henselae and Bartonella quintana in a healthy Greek population. Am J Trop Med Hyg. 2003;68(5):554–556. doi: 10.4269/ajtmh.2003.68.554
  • Chomel BB, Boulouis HJ, Maruyama S, et al. Bartonella spp. In pets and effect on human health. Emerg Infect Dis. 2006;12(3):389–94. doi: 10.3201/eid1203.050931
  • Nelson CA, Saha S, Mead PS. Cat-Scratch disease in the United States, 2005-2013. Emerg Infect Dis. 2016;22(10):1741–1746. doi: 10.3201/eid2210.160115
  • Brouqui P, Lascola B, Roux V, et al. Chronic Bartonella quintana bacteremia in homeless patients. N Engl J Med. 1999;340(3):184–9. doi: 10.1056/NEJM199901213400303
  • Hotez PJ, Brooker S. Neglected infections of poverty in the United States of America. PloS Negl Trop Dis. 2008;2(6):e256. doi: 10.1371/journal.pntd.0000256
  • Jackson LA, Spach DH, Kippen DA, et al. Seroprevalence to Bartonella quintana among patients at a community clinic in downtown Seattle. J Infect Dis. 1996;173(4):1023–1026. doi: 10.1093/infdis/173.4.1023
  • Siamer S, Dehio C. New insights into the role of Bartonella effector proteins in pathogenesis. Curr Opin Microbiol. 2015;23:80–5. doi: 10.1016/j.mib.2014.11.007
  • Boulouis HJ, Chang CC, Henn JB, et al. Factors associated with the rapid emergence of zoonotic Bartonella infections. Vet Res. 2005;36(3):383–410. doi: 10.1051/vetres:2005009
  • Dehio C. Bartonella interactions with endothelial cells and erythrocytes. Trends Microbiol. 2001;9(6):279–85. doi: 10.1016/S0966-842X(01)02047-9
  • Kyme PA, Haas A, Schaller M, et al. Unusual trafficking pattern of Bartonella henselae -containing vacuoles in macrophages and endothelial cells. Cell Microbiol. 2005;7(7):1019–1034. doi: 10.1111/j.1462-5822.2005.00531.x
  • Mändle T, Einsele H, Schaller M, et al. Infection of human CD34+ progenitor cells with Bartonella henselae results in intraerythrocytic presence of B. henselae. Blood. 2005;106(4):1215–1222. doi: 10.1182/blood-2004-12-4670
  • O’Rourke F, Mändle T, Urbich C, et al. Reprogramming of myeloid angiogenic cells by Bartonella henselae leads to microenvironmental regulation of pathological angiogenesis. Cell Microbiol. 2015;17(10):1447–63. doi: 10.1111/cmi.12447
  • Kordick DL, Brown TT, Shin K, et al. Clinical and pathologic evaluation of chronic Bartonella henselae or Bartonella clarridgeiae infection in cats. J Clin Microbiol. 1999;37(5):1536–47. doi: 10.1128/JCM.37.5.1536-1547.1999
  • Pons MJ, Gomes C, Aguilar R, et al. Immunosuppressive and angiogenic cytokine profile associated with Bartonella bacilliformis infection in post-outbreak and endemic areas of Carrion’s disease in Peru. PloS Negl Trop Dis. 2017;11(6):e0005684. doi: 10.1371/journal.pntd.0005684
  • Vermi W, Facchetti F, Riboldi E, et al. Role of dendritic cell-derived CXCL13 in the pathogenesis of Bartonella henselae B-rich granuloma. Blood. 2006;107(2):454–462. doi: 10.1182/blood-2005-04-1342
  • Kabeya H, Yamasaki A, Ikariya M, et al. Characterization of Th1 activation by Bartonella henselae stimulation in BALB/c mice: inhibitory activities of interleukin-10 for the production of interferon-gamma in spleen cells. Vet Microbiol. 2007;119(2–4):290–296. doi: 10.1016/j.vetmic.2006.08.010
  • Karem KL, Dubois KA, SL M, et al. Characterization of Bartonella henselae-specific immunity in BALB/c mice. Immunology. 1999;97(2):352–358. doi: 10.1046/j.1365-2567.1999.00750.x
  • Papadopoulos NG, Gourgiotis D, Bossios A, et al. Circulating cytokines in patients with cat scratch disease. Clin Infect Dis. 2001;33(6):e54–6. doi: 10.1086/322596
  • Hornef MW, Wick MJ, Rhen M, et al. Bacterial strategies for overcoming host innate and adaptive immune responses. Nat Immunol. 2002;3(11):1033–40. doi: 10.1038/ni1102-1033
  • Sorg I, Schmutz C, Lu YY, et al. A bartonella effector acts as signaling hub for intrinsic STAT3 activation to trigger anti-inflammatory responses. Cell Host Microbe. 2020;27(3):476–485.e7. doi: 10.1016/j.chom.2020.01.015
  • China B, BT N, de Bruyere M, et al. Role of YadA in resistance of Yersinia enterocolitica to phagocytosis by human polymorphonuclear leukocytes. Infect Immun. 1994;62(4):1275–1281. doi: 10.1128/iai.62.4.1275-1281.1994
  • Riess T, Andersson SG, Lupas A, et al. Bartonella adhesin a mediates a proangiogenic host cell response. J Exp Med. 2004;200(10):1267–1278. doi: 10.1084/jem.20040500
  • Alhede M, Lorenz M, Fritz BG, et al. Bacterial aggregate size determines phagocytosis efficiency of polymorphonuclear leukocytes. Med Microbiol Immunol. 2020;209(6):669–680. doi: 10.1007/s00430-020-00691-1
  • Bjarnsholt T. The role of bacterial biofilms in chronic infections. APMIS. 2013;136(s136):1–51. doi: 10.1111/apm.12099
  • WM D Jr. Bacterial adhesion: seen any good biofilms lately. Clin Microbiol Rev. 2002;15(2):155–166. doi: 10.1128/CMR.15.2.155-166.2002
  • Okshevsky M, Meyer RL. The role of extracellular DNA in the establishment, maintenance and perpetuation of bacterial biofilmenzymesenzymess. Crit Rev Microbiol. 2015;41(3):341–352. doi: 10.3109/1040841X.2013.841639
  • Kyme P, Dillon B, Iredell J. Phase variation in Bartonella henselae. Microbiology (Reading). 2003;149(Pt 3):621–629. doi: 10.1099/mic.0.26014-0
  • Okaro U, Green R, Mohapatra S, et al. The trimeric autotransporter adhesin BadA is required for in vitro biofilm formation by Bartonella henselae. NPJ Biofilms Microbiomes. 2019;5(1):10. doi: 10.1038/s41522-019-0083-8
  • Berne C, Ducret A, Hardy GG, et al. Adhesins involved in attachment to abiotic surfaces by gram-negative bacteria. Microbiol Spectr. 2015;3(4). doi: 10.1128/microbiolspec.MB-0018-2015
  • Okaro U, George S, Valdes S, et al. A non-coding RNA controls transcription of a gene encoding a DNA binding protein that modulates biofilm development in Bartonella henselae. Microb Pathog. 2020;147:104272. doi: 10.1016/j.micpath.2020.104272
  • Okaro U, Addisu A, Casanas B, et al. Bartonella Species, an emerging cause of blood-culture-negative endocarditis. Clin Microbiol Rev. 2017;30(3):709–746. doi: 10.1128/CMR.00013-17
  • Tu N, Carroll RK, Weiss A, et al. A family of genus-specific RNAs in tandem with DNA-binding proteins control expression of the badA major virulence factor gene in Bartonella henselae. Microbiologyopen. 2017;6(2). doi: 10.1002/mbo3.420
  • Kovach K, Davis-Fields M, Irie Y, et al. Evolutionary adaptations of biofilms infecting cystic fibrosis lungs promote mechanical toughness by adjusting polysaccharide production. NPJ Biofilms Microbiomes. 2017;3(1):1. doi: 10.1038/s41522-016-0007-9
  • Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host Microbe. 2019;26(1):15–21. doi: 10.1016/j.chom.2019.06.002
  • Schülein R, Seubert A, Gille C, et al. Invasion and persistent intracellular colonization of erythrocytes. A unique parasitic strategy of the emerging pathogen Bartonella. J Exp Med. 2001;193(9):1077–86. doi: 10.1084/jem.193.9.1077
  • Dehio C, Meyer M, Berger J, et al. Interaction of Bartonella henselae with endothelial cells results in bacterial aggregation on the cell surface and the subsequent engulfment and internalisation of the bacterial aggregate by a unique structure, the invasome. J Cell Sci. 1997;110(Pt 18):2141–2154. doi: 10.1242/jcs.110.18.2141
  • Salvatore P, Casamassimi A, Sommese L, et al. Detrimental effects of Bartonella henselae are counteracted by L-arginine and nitric oxide in human endothelial progenitor cells. Proc Natl Acad Sci U S A. 2008;105(27):9427–32. doi: 10.1073/pnas.0803602105
  • Batterman HJ, Peek JA, Loutit JS, et al. Bartonella henselae and Bartonella quintana adherence to and entry into cultured human epithelial cells. Infect Immun. 1995;63(11):4553–6. doi: 10.1128/iai.63.11.4553-4556.1995
  • VA K, Schairer A, Neumann D, et al. Bartonella henselae inhibits apoptosis in Mono Mac 6 cells. Cell Microbiol. 2005;7(1):91–104. doi: 10.1111/j.1462-5822.2004.00440.x
  • Musso T, Badolato R, Ravarino D, et al. Interaction of Bartonella henselae with the murine macrophage cell line J774: infection and proinflammatory response. Infect Immun. 2001;69(10):5974–80. doi: 10.1128/IAI.69.10.5974-5980.2001
  • Hill EM, Raji A, Valenzuela MS, et al. Adhesion to and invasion of cultured human cells by Bartonella bacilliformis. Infect Immun. 1992;60(10):4051–8. doi: 10.1128/iai.60.10.4051-4058.1992
  • O’Rourke F, Schmidgen T, Kaiser PO, et al. Adhesins of Bartonella spp. Adv Exp Med Biol. 2011;715:51–70.
  • Dehio C. Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. Cell Microbiol. 2008;10(8):1591–8. doi: 10.1111/j.1462-5822.2008.01171.x
  • Wagner A, Dehio C. Role of distinct type-IV-secretion systems and secreted effector sets in host adaptation by pathogenic Bartonella species. Cell Microbiol. 2019;21(3):e13004. doi: 10.1111/cmi.13004
  • Eicher SC, Dehio C. Bartonella entry mechanisms into mammalian host cells. Cell Microbiol. 2012;14(8):1166–73. doi: 10.1111/j.1462-5822.2012.01806.x
  • Vayssier-Taussat M, Le Rhun D, Deng HK, et al. The trw type IV secretion system of Bartonella mediates host-specific adhesion to erythrocytes. PLOS Pathog. 2010;6(6):e1000946. doi: 10.1371/journal.ppat.1000946
  • Derrick SC, Ihler GM. Deformin, a substance found in Bartonella bacilliformis culture supernatants, is a small, hydrophobic molecule with an affinity for albumin. Blood Cells Mol Dis. 2001;27(6):1013–9. doi: 10.1006/bcmd.2001.0475
  • Dabo SM, Confer AW, Anderson BE, et al. Bartonella henselae Pap31, an extracellular matrix adhesin, binds the fibronectin repeat III13 module. Infect Immun. 2006;74(5):2513–21. doi: 10.1128/IAI.74.5.2513-2521.2006
  • Roden JA, Wells DH, Chomel BB, et al. Hemin binding protein C is found in outer membrane vesicles and protects Bartonella henselae against toxic concentrations of hemin. Infect Immun. 2012;80(3):929–42. doi: 10.1128/IAI.05769-11
  • Zimmermann R, Kempf VA, Schiltz E, et al. Hemin binding, functional expression, and complementation analysis of pap 31 from Bartonella henselae. J Bacteriol. 2003;185(5):1739–1744. doi: 10.1128/JB.185.5.1739-1744.2003
  • Benson LA, Kar S, McLaughlin G, et al. Entry of Bartonella bacilliformis into erythrocytes. Infect Immun. 1986;54(2):347–53. doi: 10.1128/iai.54.2.347-353.1986
  • Sander A, Zagrosek A, Bredt W, et al. Characterization of Bartonella clarridgeiae flagellin (FlaA) and detection of antiflagellin antibodies in patients with lymphadenopathy. J Clin Microbiol. 2000;38(8):2943–8. doi: 10.1128/JCM.38.8.2943-2948.2000
  • Scherer DC, DeBuron-Connors I, Minnick MF. Characterization of Bartonella bacilliformis flagella and effect of antiflagellin antibodies on invasion of human erythrocytes. Infect Immun. 1993;61(12):4962–71. doi: 10.1128/iai.61.12.4962-4971.1993
  • Coleman SA, Minnick MF, Burns DL. Establishing a direct role for the Bartonella bacilliformis invasion-associated locus B (IalB) protein in human erythrocyte parasitism. Infect Immun. 2001;69(7):4373–81. doi: 10.1128/IAI.69.7.4373-4381.2001
  • Conyers GB, Bessman MJ. The gene, ialA, associated with the invasion of human erythrocytes by Bartonella bacilliformis, designates a nudix hydrolase active on dinucleoside 5’-polyphosphates. J Biol Chem. 1999;274(3):1203–1206. doi: 10.1074/jbc.274.3.1203
  • Deng H, Pang Q, Xia H, et al. Identification and functional analysis of invasion associated locus B (IalB) in Bartonella species. Microb Pathog. 2016;98:171–7. doi: 10.1016/j.micpath.2016.05.007
  • Kaiser PO, Linke D, Schwarz H, et al. Analysis of the BadA stalk from Bartonella henselae reveals domain-specific and domain-overlapping functions in the host cell infection process. Cell Microbiol. 2012;14(2):198–209. doi: 10.1111/j.1462-5822.2011.01711.x
  • Zhang P, Chomel BB, Schau MK, et al. A family of variably expressed outer-membrane proteins (vomp) mediates adhesion and autoaggregation in Bartonella quintana. Proc Natl Acad Sci U S A. 2004;101(37):13630–5. doi: 10.1073/pnas.0405284101
  • Henriquez-Camacho C, Ventosilla P, Minnick MF, et al. Proteins of Bartonella bacilliformis: candidates for vaccine development. Int J Pept. 2015;2015:1–5. doi: 10.1155/2015/702784
  • Zbinden R, Höchli M, Nadal D. Intracellular location of Bartonella henselae cocultivated with Vero cells and used for an indirect fluorescent-antibody test. Clin Diagn Lab Immunol. 1995;2(6):693–5. doi: 10.1128/cdli.2.6.693-695.1995
  • Verma A, Davis GE, Ihler GM, et al. Infection of human endothelial cells with Bartonella bacilliformis is dependent on Rho and results in activation of Rho. Infect Immun. 2000;68(10):5960–9. doi: 10.1128/IAI.68.10.5960-5969.2000
  • Schulte B, Linke D, Klumpp S, et al. Bartonella quintana variably expressed outer membrane proteins mediate vascular endothelial growth factor secretion but not host cell adherence. Infect Immun. 2006;74(9):5003–13. doi: 10.1128/IAI.00663-06
  • Rhomberg TA, Truttmann MC, Guye P, et al. A translocated protein of Bartonella henselae interferes with endocytic uptake of individual bacteria and triggers uptake of large bacterial aggregates via the invasome. Cell Microbiol. 2009;11(6):927–45. doi: 10.1111/j.1462-5822.2009.01302.x
  • Truttmann MC, Misselwitz B, Huser S, et al. Bartonella henselae engages inside-out and outside-in signaling by integrin β1 and talin1 during invasome-mediated bacterial uptake. J Cell Sci. 2011;124(Pt 21):3591–3602. doi: 10.1242/jcs.084459
  • Verma A, Ihler GM. Activation of Rac, Cdc42 and other downstream signalling molecules by Bartonella bacilliformis during entry into human endothelial cells. Cell Microbiol. 2002;4(9):557–69. doi: 10.1046/j.1462-5822.2002.00217.x
  • Buckles EL, McGinnis Hill E. Interaction of Bartonella bacilliformis with human erythrocyte membrane proteins. Microb Pathog. 2000;29(3):165–74. doi: 10.1006/mpat.2000.0381
  • Iwaki-Egawa S, Ihler GM. Comparison of the abilities of proteins from Bartonella bacilliformis and Bartonella henselae to deform red cell membranes and to bind to red cell ghost proteins. FEMS Microbiol Lett. 1997;157(1):207–217. doi: 10.1111/j.1574-6968.1997.tb12775.x
  • Mernaugh G, Ihler GM. Deformation factor: an extracellular protein synthesized by Bartonella bacilliformis that deforms erythrocyte membranes. Infect Immun. 1992;60(3):937–43. doi: 10.1128/iai.60.3.937-943.1992
  • Harms A, Dehio C. Intruders below the radar: molecular pathogenesis of Bartonella spp. Clin Microbiol Rev. 2012;25(1):42–78. doi: 10.1128/CMR.05009-11
  • Seubert A, Schulein R, Dehio C. Bacterial persistence within erythrocytes: a unique pathogenic strategy of Bartonella spp. Int J Med Microbiol. 2002;291(6–7):555–560. doi: 10.1078/1438-4221-00167
  • Kempf VA, Volkmann B, Schaller M, et al. Evidence of a leading role for VEGF in Bartonella henselae-induced endothelial cell proliferations. Cell Microbiol. 2001;3(9):623–632. doi: 10.1046/j.1462-5822.2001.00144.x
  • Kirby JE. In vitro model of Bartonella henselae-induced angiogenesis. Infect Immun. 2004;72(12):7315–7. doi: 10.1128/IAI.72.12.7315-7317.2004
  • Kirby JE, Nekorchuk DM. Bartonella-associated endothelial proliferation depends on inhibition of apoptosis. Proc Natl Acad Sci U S A. 2002;99(7):4656–61. doi: 10.1073/pnas.072292699
  • Minnick MF, Sappington KN, Smitherman LS, et al. Five-member gene family of Bartonella quintana. Infect Immun. 2003;71(2):814–821. doi: 10.1128/IAI.71.2.814-821.2003
  • Smitherman LS, Minnick MF. Bartonella bacilliformis GroEL: effect on growth of human vascular endothelial cells in infected cocultures. Ann N Y Acad Sci. 2005;1063(1):286–98. doi: 10.1196/annals.1355.046
  • Tsukamoto K, Shinzawa N, Kawai A, et al. The Bartonella autotransporter BafA activates the host VEGF pathway to drive angiogenesis. Nat Commun. 2020;11(1):3571. doi: 10.1038/s41467-020-17391-2
  • Tsukamoto K, Kumadaki K, Tatematsu K, et al. The passenger domain of Bartonella bacilliformis BafA promotes endothelial cell angiogenesis via the VEGF receptor signaling pathway. mSphere. 2022;7(2):e0008122. doi: 10.1128/msphere.00081-22
  • Scheidegger F, Quebatte M, Mistl C, et al. The Bartonella henselae VirB/Bep system interferes with vascular endothelial growth factor (VEGF) signalling in human vascular endothelial cells. Cell Microbiol. 2011;13(3):419–31. doi: 10.1111/j.1462-5822.2010.01545.x
  • Resto-Ruiz SI, Schmiederer M, Sweger D, et al. Induction of a potential paracrine angiogenic loop between human THP-1 macrophages and human microvascular endothelial cells during Bartonella henselae infection. Infect Immun. 2002;70(8):4564–70. doi: 10.1128/IAI.70.8.4564-4570.2002
  • Toft C, Andersson SG. Evolutionary microbial genomics: insights into bacterial host adaptation. Nat Rev Genet. 2010;11(7):465–475. doi: 10.1038/nrg2798
  • Lindroos H, Vinnere O, Mira A, et al. Genome rearrangements, deletions, and amplifications in the natural population of Bartonella henselae. J Bacteriol. 2006;188(21):7426–7439. doi: 10.1128/JB.00472-06
  • Alsmark CM, Frank AC, Karlberg EO, et al. The louse-borne human pathogen Bartonella quintana is a genomic derivative of the zoonotic agent Bartonella henselae. Proc Natl Acad Sci U S A. 2004;101(26):9716–21. doi: 10.1073/pnas.0305659101
  • Bayliss CD. Determinants of phase variation rate and the fitness implications of differing rates for bacterial pathogens and commensals. FEMS Microbiol Rev. 2009;33(3):504–20. doi: 10.1111/j.1574-6976.2009.00162.x
  • Barbour AG, Restrepo BI. Antigenic variation in vector-borne pathogens. Emerg Infect Dis. 2000;6(5):449–457. doi: 10.3201/eid0605.000502
  • Henderson IR, Owen P, Nataro JP. Molecular switches–the on and off of bacterial phase variation. Mol Microbiol. 1999;33(5):919–932. doi: 10.1046/j.1365-2958.1999.01555.x
  • Robertson BD, Meyer TF. Genetic variation in pathogenic bacteria. Trends Genet. 1992;8(12):422–7. doi: 10.1016/0168-9525(92)90325-X
  • Deitsch KW, Lukehart SA, Stringer JR. Common strategies for antigenic variation by bacterial, fungal and protozoan pathogens. Nat Rev Microbiol. 2009;7(7):493–503. doi: 10.1038/nrmicro2145
  • Riess T, Raddatz G, Linke D, et al. Analysis of Bartonella adhesin a expression reveals differences between various B. henselae strains. Infect Immun. 2007;75(1):35–43. doi: 10.1128/IAI.00963-06
  • Linke D, Riess T, Autenrieth IB, et al. Trimeric autotransporter adhesins: variable structure, common function. Trends Microbiol. 2006;14(6):264–270. doi: 10.1016/j.tim.2006.04.005
  • Szczesny P, Lupas A. Domain annotation of trimeric autotransporter adhesins–daTAA. Bioinformatics. 2008;24(10):1251–1256. doi: 10.1093/bioinformatics/btn118
  • Thibau A, Hipp K, Vaca DJ, et al. Long-Read Sequencing Reveals Genetic Adaptation of Bartonella Adhesin A Among Different Bartonella henselae Isolates. Front Microbiol. 2022;13:838267. doi: 10.3389/fmicb.2022.838267
  • RD G Jr, Bellville TM, Sviat SL, et al. The Bartonella vinsonii subsp. arupensis immunodominant surface antigen BrpA gene, encoding a 382-kilodalton protein composed of repetitive sequences, is a member of a multigene family conserved among bartonella species. Infect Immun. 2005;73(5):3128–3136. doi: 10.1128/IAI.73.5.3128-3136.2005
  • Seubert A, Hiestand R, de la Cruz F, et al. A bacterial conjugation machinery recruited for pathogenesis. Mol Microbiol. 2003;49(5):1253–66. doi: 10.1046/j.1365-2958.2003.03650.x
  • Nystedt B, Frank AC, Thollesson M, et al. Diversifying selection and concerted evolution of a type IV secretion system in Bartonella. Mol Biol Evol. 2008;25(2):287–300. doi: 10.1093/molbev/msm252
  • Yeo HJ, Yuan Q, Beck MR, et al. Structural and functional characterization of the VirB5 protein from the type IV secretion system encoded by the conjugative plasmid pKM101. Proc Natl Acad Sci U S A. 2003;100(26):15947–52. doi: 10.1073/pnas.2535211100
  • Krall L, Wiedemann U, Unsin G, et al. Detergent extraction identifies different VirB protein subassemblies of the type IV secretion machinery in the membranes of agrobacterium tumefaciens. Proc Natl Acad Sci U S A. 2002;99(17):11405–10. doi: 10.1073/pnas.172390699
  • Siewert LK, Korotaev A, Sedzicki J, et al. Identification of the Bartonella autotransporter CFA as a protective antigen and hypervariable target of neutralizing antibodies in mice. Proc Natl Acad Sci U S A. 2022;119(25):e2202059119. doi: 10.1073/pnas.2202059119
  • Québatte M, Christen M, Harms A, et al. Gene transfer agent promotes evolvability within the fittest subpopulation of a bacterial pathogen. Cell Syst. 2017;4(6):611–621.e6. doi: 10.1016/j.cels.2017.05.011
  • Québatte M, Dehio C. Bartonella gene transfer agent: Evolution, function, and proposed role in host adaptation. Cell Microbiol. 2019;21(11):e13068. doi: 10.1111/cmi.13068
  • Arnold BJ, Huang IT, Hanage WP. Horizontal gene transfer and adaptive evolution in bacteria. Nat Rev Microbiol. 2022;20(4):206–218. doi: 10.1038/s41579-021-00650-4
  • Kogay R, Koppenhöfer S, Beatty JT, et al. Formal recognition and classification of gene transfer agents as viriforms. Virus Evol. 2022;8(2):veac100. doi: 10.1093/ve/veac100
  • Redfield RJ, Soucy SM. Evolution of bacterial gene transfer agents. Front Microbiol. 2018;9:2527. doi: 10.3389/fmicb.2018.02527
  • Lang AS, Beatty JT. Importance of widespread gene transfer agent genes in alpha-proteobacteria. Trends Microbiol. 2007;15(2):54–62. doi: 10.1016/j.tim.2006.12.001
  • Tamarit D, Neuvonen MM, Engel P, et al. Origin and evolution of the bartonella gene transfer agent. Mol Biol Evol. 2018;35(2):451–464. doi: 10.1093/molbev/msx299
  • Guy L, Nystedt B, Toft C, et al. A gene transfer agent and a dynamic repertoire of secretion systems hold the keys to the explosive radiation of the emerging pathogen Bartonella. PloS Genet. 2013;9(3):e1003393. doi: 10.1371/journal.pgen.1003393
  • Ahuja N, Kumar P, Bhatnagar R. The adenylate cyclase toxins. Crit Rev Microbiol. 2004;30(3):187–96. doi: 10.1080/10408410490468795
  • Cassel D, Pfeuffer T. Mechanism of cholera toxin action: covalent modification of the guanyl nucleotide-binding protein of the adenylate cyclase system. Proc Natl Acad Sci U S A. 1978;75(6):2669–73. doi: 10.1073/pnas.75.6.2669
  • Katada T, Ui M. Direct modification of the membrane adenylate cyclase system by islet-activating protein due to ADP-ribosylation of a membrane protein. Proc Natl Acad Sci U S A. 1982;79(10):3129–33. doi: 10.1073/pnas.79.10.3129
  • Dehio C. Bartonella-host-cell interactions and vascular tumour formation. Nat Rev Microbiol. 2005;3(8):621–631. doi: 10.1038/nrmicro1209
  • Scheidegger F, Ellner Y, Guye P, et al. Distinct activities of Bartonella henselae type IV secretion effector proteins modulate capillary-like sprout formation. Cell Microbiol. 2009;11(7):1088–101. doi: 10.1111/j.1462-5822.2009.01313.x
  • Schmid MC, Schulein R, Dehio M, et al. The VirB type IV secretion system of Bartonella henselae mediates invasion, proinflammatory activation and antiapoptotic protection of endothelial cells. Mol Microbiol. 2004;52(1):81–92. doi: 10.1111/j.1365-2958.2003.03964.x
  • Schulein R, Guye P, Rhomberg TA, et al. A bipartite signal mediates the transfer of type IV secretion substrates of Bartonella henselae into human cells. Proc Natl Acad Sci U S A. 2005;102(3):856–61. doi: 10.1073/pnas.0406796102
  • Schmid MC, Scheidegger F, Dehio M, et al. A translocated bacterial protein protects vascular endothelial cells from apoptosis. PLOS Pathog. 2006;2(11):e115. doi: 10.1371/journal.ppat.0020115
  • Pulliainen AT, Pieles K, Brand CS, et al. Bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP production. Proc Natl Acad Sci U S A. 2012;109(24):9581–6. doi: 10.1073/pnas.1117651109
  • Okujava R, Guye P, Lu YY, et al. A translocated effector required for Bartonella dissemination from derma to blood safeguards migratory host cells from damage by co-translocated effectors. PLOS Pathog. 2014;10(6):e1004187. doi: 10.1371/journal.ppat.1004187
  • Marlaire S, Dehio C, Luo Z-Q. Bartonella effector protein C mediates actin stress fiber formation via recruitment of GEF-H1 to the plasma membrane. PLOS Pathog. 2021;17(1):e1008548. doi: 10.1371/journal.ppat.1008548
  • Fuhrmann O, Arvand M, Göhler A, et al. Bartonella henselae induces NF-kappaB-dependent upregulation of adhesion molecules in cultured human endothelial cells: possible role of outer membrane proteins as pathogenic factors. Infect Immun. 2001;69(8):5088–5097. doi: 10.1128/IAI.69.8.5088-5097.2001
  • Maeno N, Yoshiie K, Matayoshi S, et al. A heat-stable component of Bartonella henselae upregulates intercellular adhesion molecule-1 expression on vascular endothelial cells. Scand J Immunol. 2002;55(4):366–72. doi: 10.1046/j.1365-3083.2002.01065.x
  • Li A, Dubey S, Varney ML, et al. Interleukin-8-induced proliferation, survival, and MMP production in CXCR1 and CXCR2 expressing human umbilical vein endothelial cells. Microvasc Res. 2002;64(3):476–81. doi: 10.1006/mvre.2002.2442
  • Wang X, Quinn PJ. Lipopolysaccharide: Biosynthetic pathway and structure modification. Prog Lipid Res. 2010;49(2):97–107. doi: 10.1016/j.plipres.2009.06.002
  • Miller SI, Ernst RK, Bader MW. LPS, TLR4 and infectious disease diversity. Nat Rev Microbiol. 2005;3(1):36–46. doi: 10.1038/nrmicro1068
  • Zähringer U, Lindner B, Knirel YA, et al. Structure and biological activity of the short-chain lipopolysaccharide from Bartonella henselae ATCC 49882T. J Biol Chem. 2004;279(20):21046–54. doi: 10.1074/jbc.M313370200
  • Popa C, Abdollahi-Roodsaz S, Joosten LA, et al. Bartonella quintana lipopolysaccharide is a natural antagonist of Toll-like receptor 4. Infect Immun. 2007;75(10):4831–4837. doi: 10.1128/IAI.00237-07
  • Malgorzata-Miller G, Heinbockel L, Brandenburg K, et al. Bartonella quintana lipopolysaccharide (LPS): structure and characteristics of a potent TLR4 antagonist for in-vitro and in-vivo applications. Sci Rep. 2016;6:34221. doi: 10.1038/srep34221
  • Dehio C, Sauder U, Hiestand R. Isolation of Bartonella schoenbuchensis from Lipoptena cervi, a blood-sucking arthropod causing deer ked dermatitis. J Clin Microbiol. 2004;42(11):5320–3. doi: 10.1128/JCM.42.11.5320-5323.2004
  • Kordick DL, Hilyard EJ, Hadfield TL, et al. Bartonella clarridgeiae, a newly recognized zoonotic pathogen causing inoculation papules, fever, and lymphadenopathy (cat scratch disease). J Clin Microbiol. 1997;35(7):1813–8. doi: 10.1128/jcm.35.7.1813-1818.1997
  • Yoon SI, Kurnasov O, Natarajan V, et al. Structural basis of TLR5-flagellin recognition and signaling. Science. 2012;335(6070):859–64. doi: 10.1126/science.1215584
  • Andersen-Nissen E, Smith KD, Strobe KL, et al. Evasion of Toll-like receptor 5 by flagellated bacteria. Proc Natl Acad Sci U S A. 2005;102(26):9247–52. doi: 10.1073/pnas.0502040102
  • Roca Suarez AA, Van Renne N, Baumert TF, et al. Viral manipulation of STAT3: Evade, exploit, and injure. PLOS Pathog. 2018;14(3):e1006839. doi: 10.1371/journal.ppat.1006839
  • Xiong A, Yang Z, Shen Y, et al. Transcription factor STAT3 as a novel molecular target for cancer prevention. Cancers (Basel). 2014;6(2):926–57. doi: 10.3390/cancers6020926
  • Anzaldi LL, Skaar EP. Overcoming the heme paradox: heme toxicity and tolerance in bacterial pathogens. Infect Immun. 2010;78(12):4977–89. doi: 10.1128/IAI.00613-10
  • Schmitt TH, WA F Jr, Schreier S. Hemin-induced lipid membrane disorder and increased permeability: a molecular model for the mechanism of cell lysis. Arch Biochem Biophys. 1993;307(1):96–103. doi: 10.1006/abbi.1993.1566
  • Battisti JM, Sappington KN, Smitherman LS, et al. Environmental signals generate a differential and coordinated expression of the heme receptor gene family of Bartonella quintana. Infect Immun. 2006;74(6):3251–61. doi: 10.1128/IAI.00245-06
  • Pankov R, Yamada KM. Fibronectin at a glance. J Cell Sci. 2002;115(Pt 20):3861–3863. doi: 10.1242/jcs.00059
  • Vaca DJ, Thibau A, Leisegang MS, et al. Interaction of Bartonella henselae with fibronectin represents the molecular basis for adhesion to Host cells. Microbiol Spectr. 2022;10(3):e0059822. doi: 10.1128/spectrum.00598-22
  • Dehio C. Molecular and cellular basis of bartonella pathogenesis. Annu Rev Microbiol. 2004;58(1):365–90. doi: 10.1146/annurev.micro.58.030603.123700
  • Dabo SM, Confer AW, Saliki JT, et al. Binding of Bartonella henselae to extracellular molecules: identification of potential adhesins. Microb Pathog. 2006;41(1):10–20. doi: 10.1016/j.micpath.2006.04.003
  • Minnick MF, Smitherman LS, Samuels DS. Mitogenic effect of Bartonella bacilliformis on human vascular endothelial cells and involvement of GroEL. Infect Immun. 2003;71(12):6933–42. doi: 10.1128/IAI.71.12.6933-6942.2003
  • Thibau A, Vaca DJ, Bagowski M, et al. Adhesion of Bartonella henselae to fibronectin is mediated via repetitive motifs present in the stalk of Bartonella Adhesin a. Microbiol Spectr. 2022;10(5):e0211722. doi: 10.1128/spectrum.02117-22
  • Truttmann MC, Rhomberg TA, Dehio C. Combined action of the type IV secretion effector proteins BepC and BepF promotes invasome formation of Bartonella henselae on endothelial and epithelial cells. Cell Microbiol. 2011;13(2):284–99. doi: 10.1111/j.1462-5822.2010.01535.x