628
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Iron depletion has different consequences on the growth and survival of Toxoplasma gondii strains

, , , , & ORCID Icon
Article: 2329566 | Received 29 Dec 2023, Accepted 07 Mar 2024, Published online: 20 Mar 2024

References

  • Montoya JG, Liesenfeld O. Toxoplasmosis. Lancet. 2004;363(9425):1965–15. doi: 10.1016/S0140-6736(04)16412-X.
  • Sanchez SG, Besteiro S. The pathogenicity and virulence of Toxoplasma gondii. Virulence. 2021;12(1):3095–3114. doi: 10.1080/21505594.2021.2012346
  • Clough B, Frickel E-M. The Toxoplasma parasitophorous vacuole: an evolving host–parasite frontier. Trends Parasitol. 2017;33(6):473–488. doi: 10.1016/j.pt.2017.02.007
  • Tu V, Tomita T, Sugi T, et al. The Toxoplasma gondii cyst wall interactome. MBio. 2020;11(1):e02699–19. doi: 10.1128/mBio.02699-19.
  • Saliba KJ, Kirk K. Nutrient acquisition by intracellular apicomplexan parasites: staying in for dinner. Int J Parasitol. 2001;31(12):1321–1330. doi: 10.1016/S0020-7519(01)00258-2
  • Coppens I. Exploitation of auxotrophies and metabolic defects in Toxoplasma as therapeutic approaches. Int J Parasitol. 2014;44(2):109–120. doi: 10.1016/j.ijpara.2013.09.003
  • Sloan MA, Aghabi D, Harding CR. Orchestrating a heist: uptake and storage of metals by apicomplexan parasites. Microbiology (Reading). 2021;167(12):mic.0.001114. doi: 10.1099/mic.0.001114
  • Bergmann A, Floyd K, Key M, et al. Toxoplasma gondii requires its plant-like heme biosynthesis pathway for infection. PLoS Pathog. 2020;16(5):e1008499. doi: 10.1371/journal.ppat.1008499
  • Pamukcu S, Cerutti A, Bordat Y, et al. Differential contribution of two organelles of endosymbiotic origin to iron-sulfur cluster synthesis and overall fitness in Toxoplasma. PLoS Pathog. 2021;17(11):e1010096. doi: 10.1371/journal.ppat.1010096
  • Aghabi D, Sloan M, Gill G, et al. The vacuolar iron transporter mediates iron detoxification in Toxoplasma gondii. Nat Commun. 2023;14(1):3659. doi: 10.1038/s41467-023-39436-y
  • Oliveira MC, Coutinho LB, Almeida MPO, et al. The availability of iron is involved in the murine experimental Toxoplasma gondii infection outcome. Microorganisms. 2020;8(4):560. doi: 10.3390/microorganisms8040560
  • Dimier IH, Bout DT. Interferon-γ-activated primary enterocytes inhibit Toxoplasma gondii replication: a role for intracellular iron. Immunology. 1998;94:488–495. doi: 10.1046/j.1365-2567.1998.00553.x
  • Ward RJ, Zucca FA, Duyn JH, et al. The role of iron in brain ageing and neurodegenerative disorders. Lancet Neurol. 2014;13(10):1045–1060. doi: 10.1016/S1474-4422(14)70117-6
  • Radke JR, Striepen B, Guerini MN, et al. Defining the cell cycle for the tachyzoite stage of Toxoplasma gondii. Mol Biochem Parasitol. 2001;115:165–175. doi: 10.1016/S0166-6851(01)00284-5
  • Howe DK, Sibley LD. Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis. 1995;172(6):1561–1566. doi: 10.1093/infdis/172.6.1561
  • Hosseini SA, Amouei A, Sharif M, et al. Human toxoplasmosis: a systematic review for genetic diversity of Toxoplasma gondii in clinical samples. Epidemiol Infect. 2018;147:e36. doi: 10.1017/S0950268818002947
  • Galal L, Hamidović A, Dardé ML, et al. Diversity of Toxoplasma gondii strains at the global level and its determinants. Food Waterborne Parasitol. 2019;15:e00052. doi: 10.1016/j.fawpar.2019.e00052
  • Sabin AB. Toxoplasmic encephalitis in children. JAMA. 1941;116(9):801. doi: 10.1001/jama.1941.02820090001001
  • Martrou P, Pestre M, Loubet R, et al. La toxoplasmose congénitale (note concernant un cas mortel). Limousin Médical. 1965;53:3–7.
  • Dardé ML, Bouteille B, Leboutet MJ, et al. Toxoplasma gondii: Étude ultrastructurale des formations kystiques observées en culture de fibroblastes humains. Ann Parasitol Hum Comp. 1989;64:403–411. doi: 10.1051/parasite/1989646403
  • Cristina N, Dardé ML, Boudin C, et al. A DNA fingerprinting method for individual characterization ofToxoplasma gondii strains: combination with isoenzymatic characters for determination of linkage groups. Parasitol Res. 1995;81:32–37. doi: 10.1007/BF00932414
  • Soete M, Camus D, Dubremetz JF. Experimental induction of bradyzoite-specific antigen expression and cyst formation by the RH strain of Toxoplasma gondii in vitro. Exp Parasitol. 1994;78:361–370. doi: 10.1006/expr.1994.1039
  • Sanchez SG, Bassot E, Cerutti A, et al. The apicoplast is important for the viability and persistence of Toxoplasma gondii bradyzoites. Proc Natl Acad Sci USA. 2023;120(34):e2309043120. doi: 10.1073/pnas.2309043120
  • Anderson-White BR, Ivey FD, Cheng K, et al. A family of intermediate filament-like proteins is sequentially assembled into the cytoskeleton of Toxoplasma gondii. Cell Microbiol. 2011;13(1):18–31. doi: 10.1111/j.1462-5822.2010.01514.x
  • Couvreur G, Sadak A, Fortier B, et al. Surface antigens of Toxoplasma gondii. Parasitology. 1988;97(Pt 1):1–10. doi: 10.1017/S0031182000066695
  • Tomavo S, Fortier B, Soete M, et al. Characterization of bradyzoite-specific antigens of Toxoplasma gondii. Infect Immun. 1991;59(10):3750–3753. doi: 10.1128/iai.59.10.3750-3753.1991
  • Renaud EA, Pamukcu S, Cerutti A, et al. Disrupting the plastidic iron-sulfur cluster biogenesis pathway in Toxoplasma gondii has pleiotropic effects irreversibly impacting parasite viability. J Biol Chem. 2022;298(8):102243. doi: 10.1016/j.jbc.2022.102243
  • Bligh EG, Dyer WJ. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 1959;37(1):911–917. doi: 10.1139/y59-099
  • Barrans A, Collet X, Barbaras R, et al. Hepatic lipase induces the formation of pre-beta 1 high density lipoprotein (HDL) from triacylglycerol-rich HDL2. A study comparing liver perfusion to in vitro incubation with lipases. J Biol Chem. 1994;269(15):11572–11577. doi: 10.1016/S0021-9258(19)78162-9
  • Morrissette NS, Murray JM, Roos DS Subpellicular microtubules associate with an intramembranous particle lattice in the protozoan parasite Toxoplasma gondii. J Cell Sci. 1997;110(Pt 1):35–42. doi: 10.1242/jcs.110.1.35
  • Besteiro S, Brooks CF, Striepen B, et al. Autophagy protein Atg3 is essential for maintaining mitochondrial integrity and for normal intracellular development of Toxoplasma gondii tachyzoites. PLoS Pathog. 2011;7(12):e1002416. doi: 10.1371/journal.ppat.1002416
  • Dubey JP, Lindsay DS, Speer CA. Structures of Toxoplasma gondii tachyzoites, bradyzoites, and sporozoites and biology and development of tissue cysts. Clin Microbiol Rev. 1998;11(2):267–299. doi: 10.1128/CMR.11.2.267
  • Tomita T, Bzik DJ, Ma YF, et al. The Toxoplasma gondii cyst wall protein CST1 is critical for cyst wall integrity and promotes bradyzoite persistence. PLoS Pathog. 2013;9(12):e1003823. doi: 10.1371/journal.ppat.1003823
  • Dogga SK, Lunghi M, Maco B, et al. Importance of aspartyl protease 5 in the establishment of the intracellular niche during acute and chronic infection of Toxoplasma gondii. Mol Microbiol. 2022;118(6):601–622. doi: 10.1111/mmi.14987
  • Soete M, Fortier B, Camus D, et al. Toxoplasma gondii: kinetics of bradyzoite-tachyzoite interconversion in vitro. Exp Parasitol. 1993;76(3):259–264. doi: 10.1006/expr.1993.1031
  • Cerutti A, Blanchard N, Besteiro S. The bradyzoite: a key developmental stage for the persistence and pathogenesis of toxoplasmosis. Pathogens. 2020;9(3):234. doi: 10.3390/pathogens9030234
  • Pereira M, Chen T-D, Buang N, et al. Acute iron deprivation reprograms human macrophage metabolism and reduces inflammation in vivo. Cell Rep. 2019;28(2):498–511.e5. doi: 10.1016/j.celrep.2019.06.039
  • Crooks DR, Maio N, Lane AN, et al. Acute loss of iron–sulfur clusters results in metabolic reprogramming and generation of lipid droplets in mammalian cells. J Biol Chem. 2018;293:8297–8311. doi: 10.1074/jbc.RA118.001885
  • Long M, Sanchez-Martinez A, Longo M, et al. DGAT1 activity synchronises with mitophagy to protect cells from metabolic rewiring by iron depletion. EMBO J. 2022;41(10):e109390. doi: 10.15252/embj.2021109390
  • Nolan SJ, Romano JD, Coppens I, et al. Host lipid droplets: an important source of lipids salvaged by the intracellular parasite Toxoplasma gondii. PLoS Pathog. 2017;13(6):e1006362. doi: 10.1371/journal.ppat.1006362
  • Walther TC, Chung J, Farese RV. Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 2017;33(1):491–510. doi: 10.1146/annurev-cellbio-100616-060608
  • Krahmer N, Guo Y, Wilfling F, et al. Phosphatidylcholine synthesis for lipid droplet expansion is mediated by localized activation of CTP: phosphocholine cytidylyltransferase. Cell Metab. 2011;14(4):504–515. doi: 10.1016/j.cmet.2011.07.013
  • Romano JD, Sonda S, Bergbower E, et al. Toxoplasma gondii salvages sphingolipids from the host Golgi through the rerouting of selected Rab vesicles to the parasitophorous vacuole. Mol Biol Cell. 2013;24(12):1974–1995. doi: 10.1091/mbc.e12-11-0827
  • Pratt S, Wansadhipathi-Kannangara NK, Bruce CR, et al. Sphingolipid synthesis and scavenging in the intracellular apicomplexan parasite, Toxoplasma gondii. Mol Biochem Parasitol. 2013;187(1):43–51. doi: 10.1016/j.molbiopara.2012.11.007
  • Deevska GM, Nikolova-Karakashian MN. The expanding role of sphingolipids in lipid droplet biogenesis. Biochimica et Biophysica Acta (BBA) - Mol Cell Biol Lipids. 2017;1862(10):1155–1165. doi: 10.1016/j.bbalip.2017.07.008
  • Coppin A, Dzierszinski F, Legrand S, et al. Developmentally regulated biosynthesis of carbohydrate and storage polysaccharide during differentiation and tissue cyst formation in Toxoplasma gondii. Biochimie. 2003;85(3–4):353–361. doi: 10.1016/S0300-9084(03)00076-2
  • Nolan SJ, Romano JD, Kline JT, et al. Novel approaches to kill Toxoplasma gondii by exploiting the uncontrolled uptake of unsaturated fatty acids and vulnerability to lipid storage inhibition of the parasite. Antimicrob Agents Chemother. 2018;62(10):e00347–18. doi: 10.1128/AAC.00347-18
  • Primo VA, Rezvani Y, Farrell A, et al. The Extracellular Milieu of Toxoplasma ’s Lytic Cycle Drives Lab Adaptation, Primarily by Transcriptional Reprogramming. mSystems. 2021;6:e0119621. doi: 10.1128/mSystems.01196-21
  • Walsh D, Katris NJ, Sheiner L, et al. Toxoplasma metabolic flexibility in different growth conditions. Trends Parasitol. 2022;38(9):775–790. doi: 10.1016/j.pt.2022.06.001
  • Blume M, Seeber F. Metabolic interactions between Toxoplasma gondii and its host. F1000Res. 2018;7:1719. doi: 10.12688/f1000research.16021.1
  • Haschka D, Hoffmann A, Weiss G. Iron in immune cell function and host defense. Semin Cell Dev Biol. 2021;115:27–36. doi: 10.1016/j.semcdb.2020.12.005
  • Murdoch CC, Skaar EP. Nutritional immunity: the battle for nutrient metals at the host–pathogen interface. Nat Rev Microbiol. 2022;20(11):657–670. doi: 10.1038/s41579-022-00745-6
  • Andreini C, Putignano V, Rosato A, et al. The human iron-proteome. Metallomics 2018; 10:1223–1231. 9 10.1039/c8mt00146d
  • Ying Z, Yin M, Zhu Z, et al. Iron stress affects the survival of Toxoplasma gondii [internet]. Research Square; 2023 [cited 2023 Nov 30]. Available from: https://www.researchsquare.com/article/rs-3240882/v1
  • Sloan MA, Scott A, Harding CR. Keeping FIT: iron-mediated post-transcriptional regulation in Toxoplasma gondii. bioRxiv. 2023. cited 2023 Nov 30]. https://biorxiv.org/lookup/doi/10.1101/2023.11.08.565792
  • Lüder CGK, Rahman T. Impact of the host on Toxoplasma stage differentiation. Microb Cell. 2017;4:203–211. doi: 10.15698/mic2017.07.579
  • Hu X, Binns D, Reese ML. The coccidian parasites Toxoplasma and Neospora dysregulate mammalian lipid droplet biogenesis. J Biol Chem. 2017;292(26):11009–11020. doi: 10.1074/jbc.M116.768176
  • Gomes AF, Magalhães KG, Rodrigues RM, et al. Toxoplasma gondii- skeletal muscle cells interaction increases lipid droplet biogenesis and positively modulates the production of IL-12, IFN-g and PGE2. Parasites Vectors. 2014;7(1):47. doi: 10.1186/1756-3305-7-47
  • Jarc E, Petan T. Lipid droplets and the management of cellular stress. Yale J Biol Med. 2019;92(3):435–452. doi: 10.1016/j.bbalip.2017.07.006
  • Konrad C, Wek RC, Sullivan WJ. GCN2-like eIF2α kinase manages the amino acid starvation response in Toxoplasma gondii. Int J Parasitol. 2014;44(2):139–146. doi: 10.1016/j.ijpara.2013.08.005
  • Augusto L, Martynowicz J, Amin PH, et al. TgIF2K-B is an eIf2α kinase in Toxoplasma gondii that responds to oxidative stress and optimizes pathogenicity. MBio. 2021;12:e03160–20. doi: 10.1128/mBio.03160-20
  • Augusto L, Wek RC, Sullivan WJ. Host sensing and signal transduction during Toxoplasma stage conversion. Mol Microbiol. 2021;115(5):839–848. doi: 10.1111/mmi.14634
  • Bilgic B, Pfefferbaum A, Rohlfing T, et al. MRI estimates of brain iron concentration in normal aging using quantitative susceptibility mapping. Neuroimage. 2012;59(3):2625–2635. doi: 10.1016/j.neuroimage.2011.08.077