926
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Extracellular vesicles from virulent P. brasiliensis induce TLR4 and dectin-1 expression in innate cells and promote enhanced Th1/Th17 response

, , , , , & ORCID Icon show all
Article: 2329573 | Received 27 Nov 2023, Accepted 07 Mar 2024, Published online: 21 Mar 2024

References

  • Montenegro MR, Franco CS. Pathology. In: Franco M, CS Lacaz, A Restrepo-Moreno GD Negro (editors). Paracoccidioidomycosis. Boca Camundongon, FL: CRC Press; 1994. p. 131–20.
  • Turissini DA, Gomez OM, Teixeira MM, et al. Species boundaries in the human pathogen paracoccidioides. Fungal Genet Biol. 2017 Sep;106:9–25. doi: 10.1016/j.fgb.2017.05.007
  • Coutinho ZF, Wanke B, Travassos C, et al. Hospital morbidity due to paracoccidioidomycosis in Brazil (1998-2006). Trop Med Int Health. 2015 May;20(5):673–680. doi: 10.1111/tmi.12472
  • De Oliveira HC, Michaloski JS, da Silva JF, et al. Peptides derived from a phage display library inhibit adhesion and protect the host against infection by Paracoccidioides brasiliensis and Paracoccidioides lutzii. Front Pharmacol. 2016;7:509. doi: 10.3389/fphar.2016.00509
  • Martinez R. New trends in paracoccidioidomycosis epidemiology. J Fungi. 2017; 3(1):1. doi: 10.3390/jof3010001
  • McEwen JG, Bedoya V, Patiño MM, et al. Experimental murine paracoccidiodomycosis induced by the inhalation of conidia. J Med Vet Mycol. 1987 Jun;25(3):165–75.
  • Vallejo MC, Nakayasu ES, Matsuo AL, et al. Vesicle and vesicle-free extracellular proteome of paracoccidioides brasiliensis: comparative analysis with other pathogenic fungi. J Proteome Res. 2012; Mar 2;11(3):1676–1685. doi: 10.1021/pr200872s
  • Hwang I. Cell-cell communication via extracellular membrane vesicles and its role in the immune response. Mol Cells. 2013 Aug;36(2):105–11. doi: 10.1007/s10059-013-0154-2
  • Vallejo MC, Matsuo AL, Ganiko L, et al. The pathogenic fungus paracoccidioides brasiliensis exports extracellular vesicles containing highly immunogenic α-galactosyl epitopes. Eukaryot Cell. 2011 Mar;10(3):343–351. doi: 10.1128/EC.00227-10
  • Peres da Silva R, Heiss C, Black I, et al. Extracellular vesicles from paracoccidioides pathogenic species transport polysaccharide and expose ligands for DC-SIGN receptors. Sci Rep. 2015 Sep 21;5:14213. doi: 10.1038/srep14213
  • da Silva TA, Roque-Barreira MC, Casadevall A, et al. Extracellular vesicles from Paracoccidioides brasiliensis induced M1 polarization in vitro. Sci Rep. 2016; Oct 24;6:35867. doi: 10.1038/srep35867.
  • Octaviano CE, Abrantes NE, Puccia R. Extracellular vesicles from paracoccidioides brasiliensis can induce the expression of fungal virulence traits in vitro and enhance infection in mice. Front Cell Infect Microbiol. 2022 Feb 28;12:834653. doi: 10.3389/fcimb.2022.834653
  • Baltazar LM, Ribeiro GF, Freitas GJ, et al. Protective response in experimental paracoccidioidomycosis elicited by extracellular vesicles containing antigens of Paracoccidioides brasiliensis. Cells. 2021 Jul 17;10(7):1813. doi: 10.3390/cells10071813
  • Cleare LG, Zamith D, Heyman HM, et al. Media matters! Alterations in the loading and release of Histoplasma capsulatum extracellular vesicles in response to different nutritional milieus. Cell Microbiol. 2020 Sep;22(9):e13217.
  • Vargas G, Rocha JD, Oliveira DL, et al. Compositional and immunobiological analyses of extracellular vesicles released by Candida albicans. Cell Microbiol. 2015 Mar;17(3):389–407. doi: 10.1111/cmi.12374
  • Silverman JM, Clos J, Horakova E, et al. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J Immunol. 2010 Nov 1;185(9):5011–5022. doi: 10.4049/jimmunol.1000541
  • Netto CF. Quantitative studies on fixation of complement in South American blastomycosis with polysaccharide antigen. Arq Cir Clin Exp. 1955; 18(5–6):197–254
  • Cano LE, Singer-Vermes LM, Vaz CA, et al. Pulmonary paracoccidioidomycosis in resistant and susceptible mice: relationship among progression of infection, bronchoalveolar cell activation, cellular immune response, and specific isotype patterns. Infect Immun. 1995;63(5):1777–1783.
  • Borges BM, Ramos RBC, Preite NW, et al. Transcriptional profiling of a fungal granuloma reveals a low metabolic activity of Paracoccidioides brasiliensis yeasts and an actively regulated host immune response. Front Cell Infect Microbiol. 2023;13. doi: 10.3389/fcimb.2023.1268959
  • Singer-Vermes LM, Ciavaglia MC, Kashino SS, et al. The source of the growth-promoting factor(s) affects the plating efficiency of paracoccidioides brasiliensis. J Med Vet Mycol. 1992;30(3):261–4. doi: 10.1080/02681219280000331
  • Reis FCG, Borges BS, Jozefowicz LJ, et al. A novel protocol for the isolation of fungal extracellular vesicles reveals the participation of a putative scramblase in polysaccharide export and capsule construction in Cryptococcus gattii. mSphere. 2019 Mar 20;4(2):e00080–19. doi: 10.1128/mSphere.00080-19
  • Subedi P, Schneider M, Philipp J, et al. Comparison of methods to isolate proteins from extracellular vesicles for mass spectrometry-based proteomic analyses. Anal Biochem. 2019 Nov 1;584:113390. doi: 10.1016/j.ab.2019.113390
  • Kleifeld O, Doucet A, Prudova A, et al. Identifying and quantifying proteolytic events and the natural N terminome by terminal amine isotopic labeling of substrates, Nat Protoc. 2011;6:1578–1611. 10 10.1038/nprot.2011.382
  • Cox J, Hein MY, Luber CA, et al. Accurate proteome-wide label-free quantification by delayed normalization and maximal peptide ratio extraction, termed MaxLFQ. Mol & Cell Proteomics. 2014 Sep;13(9):2513–26. doi: 10.1074/mcp.M113.031591
  • Cox J, Mann M. MaxQuant enables high peptide identification rates, individualized p.p.b.-range mass accuracies and proteome-wide protein quantification. Nat Biotechnol. 2008 Dec;26(12):1367–72. doi: 10.1038/nbt.1511
  • Bolstad BM, Irizarry RA, Astrand M, et al. A comparison of normalization methods for high density oligonucleotide array data based on variance and bias. Bioinformatics. 2003 Jan 22;19(2):185–93. doi: 10.1093/bioinformatics/19.2.185
  • Ihaka R, Gentleman R. R: a language for data analysis and graphics. J Comput Graph Stat. 1996;5(3):299–314. doi: 10.1080/10618600.1996.10474713
  • Gentleman RC, Carey VJ, Bates DM, et al. Bioconductor: open software development for computational biology and bioinformatics. Genome Biol. 2004;5(10):R80. doi: 10.1186/gb-2004-5-10-r80.
  • Ritchie ME, Phipson B, Wu D, et al. Limma powers differential expression analyses for RNA-sequencing and microarray studies. Nucleic Acids Res. 2015;43(7), e47. 10.1093/nar/gkv007
  • Smyth GK. Linear models and empirical Bayes methods for assessing differential expression in microarray experiments.Statistical applications in genetics and molecular biology. Stat Appl Genet Mol Biol. 2004;3(1):1–25. Article 3. doi: 10.2202/1544-6115.1027.
  • Ashburner M, Ball CA, Blake JA, et al. Gene ontology: tool for the unification of biology. Gene Ontology Consortium Nat Genet. 2000 May;25(1):25–9. doi: 10.1038/75556
  • Kanehisa M, Goto S. KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res. 2000 Jan 1;28(1):27–30. doi: 10.1093/nar/28.1.27
  • Kanehisa M. Toward understanding the origin and evolution of cellular organisms. Protein Sci. 2019 Nov;28(11):1947–1951. doi: 10.1002/pro.3715
  • Carbon S, Douglass E, Good BM, et al. The gene ontology resource: enriching a GOld mine. Nucleic Acids Res. 2021 Jan 8;49(D1):D325–D334. doi: 10.1093/nar/gkaa1113
  • Kanehisa M, Furumichi M, Sato Y, et al. KEGG for taxonomy-based analysis of pathways and genomes. Nucleic Acids Res. 2023 Jan 6;51(D1):D587–D592. doi: 10.1093/nar/gkac963
  • Camacho E, GA N-O. Paracoccidioides spp.: virulence factors and immune-evasion strategies. Mediators Inflamm. 2017;2017:5313691. doi: 10.1155/2017/5313691
  • Gontijo FA, de Melo AT, Pascon RC, et al. The role of aspartyl aminopeptidase (Ape4) in Cryptococcus neoformans virulence and authophagy. PloS One. 2017 May 25;12(5):e0177461. doi: 10.1371/journal.pone.0177461
  • Albuquerque PC, Cordero RJ, Fonseca FL, et al. A paracoccidioides brasiliensis glycan shares serologic and functional properties with cryptococcal glucuronoxylomannan. Fungal Genet Biol. 2012 Nov;49(11):943–954. doi: 10.1016/j.fgb.2012.09.002
  • Gründlinger M, Gsaller F, Schrettl M, et al. Aspergillus fumigatus SidJ mediates intracellular siderophore hydrolysis. Appl Environ Microbiol. 2013 Dec;79(23):7534–6. doi: 10.1128/AEM.01285-13
  • Marcos CM, Silva Jde F, Oliveira HC, et al. Decreased expression of 14-3-3 in Paracoccidioides brasiliensis confirms its involvement in fungal pathogenesis. Virulence. 2016;7(2):72–84. doi: 10.1080/21505594.2015.1122166.
  • Verícimo MA, França KM, Arnholdt AC, et al. Increased apoptosis during the early phase of experimental paracoccidioidomycosis as a phenotypic marker of resistance. Microbes Infect. 2006 Oct;8(12–13):2811–2820. doi: 10.1016/j.micinf.2006.08.012
  • de Oliveira H C, da Silva J de, Scorzoni L, et al. Importance of adhesins in virulence of Paracoccidioides spp. Front Microbiol. 2015;6. doi: 10.3389/fmicb.2015.00303
  • Popi AF, Lopes JD, Mariano M. GP43 from Paracoccidioides brasiliensis inhibits macrophage functions. An evasion mechanism of the fungus. Cell Immunol. 2002 Jul–Aug;218(1–2):87–94. doi: 10.1016/s0008-8749(02)00576-2
  • Puccia R, Vallejo MC, Matsuo AL, et al. The paracoccidioides cell wall: past and present layers toward understanding interaction with the host. Front Microbiol. 2011 Dec 20;2:257. doi: 10.3389/fmicb.2011.00257
  • Bitencourt TA, Hatanaka O, Pessoni AM, et al. Fungal extracellular vesicles are involved in intraspecies intracellular communication. MBio. 2022 Feb 22;13(1):e0327221. doi: 10.1128/mbio.03272-21
  • Rodrigues ML, Nimrichter L, Oliveira DL, et al. Vesicular trans-cell wall transport in fungi: a mechanism for the delivery of virulence-associated macromolecules? Lipid Insights. 2008 Aug;2:27–40. doi: 10.4137/lpi.s1000
  • Dalod M, Chelbi R, Malissen B, et al. Dendritic cell maturation: functional specialization through signaling specificity and transcriptional programming. EMBO J. 2014 May 16;33(10):1104–16. doi: 10.1002/embj.201488027
  • Ferreira KS, Lopes JD, Almeida SR. Down-regulation of dendritic cell activation induced by paracoccidioides brasiliensis. Immunol Lett. 2004 Jun 15;94(1–2):107–14. doi: 10.1016/j.imlet.2004.04.005
  • Yunna C, Mengru H, Lei W, et al. Macrophage M1/M2 polarization. Eur J Pharmacol. 2020 Jun 15;877:173090. doi: 10.1016/j.ejphar.2020.173090
  • Ahmed I, Ismail N. M1 and M2 macrophages polarization via mTORC1 influences innate immunity and outcome of Ehrlichia infection. J Cell Immunol. 2020;2(3):108–115. doi: 10.33696/immunology.2.029
  • Fernandes RK, Bachiega TF, Rodrigues DR, et al. Paracoccidioides brasiliensis interferes on dendritic cells maturation by inhibiting PGE2 production. PloS One. 2015 Mar 20;10(3):e0120948. doi: 10.1371/journal.pone.0120948
  • Calich VL, da Costa TA, Felonato M, et al. Innate immunity to Paracoccidioides brasiliensis infection. Mycopathologia. 2008 Apr-May;165(4–5):223–236. doi: 10.1007/s11046-007-9048-1
  • de-Souza-Silva CM, Hurtado FA, Tavares AH, et al. Transcriptional remodeling patterns in Murine Dendritic Cells Infected with paracoccidioides brasiliensis: more is not necessarily better. J Fungi. 2020 Nov 24;6(4):311. doi: 10.3390/jof6040311
  • Calich VL, Pina A, Felonato M, et al. Toll-like receptors and fungal infections: the role of TLR2, TLR4 and MyD88 in paracoccidioidomycosis. FEMS Immunol Med Microbiol. 2008 Jun;53(1):1–7. doi: 10.1111/j.1574-695X.2008.00378.x
  • Loures FV, Pina A, Felonato M, et al. Toll-like receptor 4 signaling leads to severe fungal infection associated with enhanced proinflammatory immunity and impaired expansion of regulatory T cells. Infect Immun. 2010 Mar;78(3):1078–1088. doi: 10.1128/IAI.01198-09
  • Loures FV, Pina A, Felonato M, et al. TLR2 is a negative regulator of Th17 cells and tissue pathology in a pulmonary model of fungal infection. J Immunol. 2009 Jul 15;183(2):1279–1290. doi: 10.4049/jimmunol.0801599
  • Rodriguez-Echeverri C, Puerta-Arias JD, González Á. Paracoccidioides brasiliensis activates mesenchymal stem cells through TLR2, TLR4, and dectin-1. Med Mycol. 2021 Feb 4;59(2):149–157. doi: 10.1093/mmy/myaa039
  • Loures FV, Araújo EF, Feriotti C, et al. TLR-4 cooperates with dectin-1 and mannose receptor to expand Th17 and Tc17 cells induced by paracoccidioides brasiliensis stimulated dendritic cells. Front Microbiol. 2015 Mar 31;6:261. doi: 10.3389/fmicb.2015.00261 PMID: 25873917; PMCID: PMC4379960
  • Loures FV, Pina A, Felonato M, et al. MyD88 signaling is required for efficient innate and adaptive immune responses to Paracoccidioides brasiliensis infection. Infect Immun. 2011 Jun;79(6):2470–2480. doi: 10.1128/IAI.00375-10
  • Couper KN, Blount DG, Riley EM. IL-10: the master regulator of immunity to infection. J Immunol. 2008 May 1;180(9):5771–7. doi: 10.4049/jimmunol.180.9.5771
  • Knolle PA, Uhrig A, Hegenbarth S, et al. IL-10 down-regulates T cell activation by antigen-presenting liver sinusoidal endothelial cells through decreased antigen uptake via the mannose receptor and lowered surface expression of accessory molecules. Clin Exp Immunol. 1998 Dec;114(3):427–433. doi: 10.1046/j.1365-2249.1998.00713.x
  • Calich VL, Kashino SS. Cytokines produced by susceptible and resistant mice in the course of paracoccidioides brasiliensis infection. Braz J Med Biol Res. 1998 May;31(5):615–23. doi: 10.1590/s0100-879x1998000500003
  • Costa TA, Bazan SB, Feriotti C, et al. In pulmonary paracoccidioidomycosis IL-10 deficiency leads to increased immunity and regressive infection without enhancing tissue pathology. PloS Negl Trop Dis. 2013 Oct 24;7(10):e2512. doi: 10.1371/journal.pntd.0002512
  • Calich VLG, Mamoni RL, Loures FV. Regulatory T cells in paracoccidioidomycosis. Virulence. 2019 Dec;10(1):810–821. doi: 10.1080/21505594.2018.1483674
  • Cavassani KA, Campanelli AP, Moreira AP, et al. Systemic and local characterization of regulatory T cells in a chronic fungal infection in humans. J Immunol. 2006 Nov 1;177(9):5811–8. doi: 10.4049/jimmunol.177.9.5811
  • Kaminski VL, Preite NW, Borges BM, et al. The immunosuppressive activity of myeloid-derived suppressor cells in murine Paracoccidioidomycosis relies on Indoleamine 2,3-dioxygenase activity and Dectin-1 and TLRs signaling. Sci Rep. 2023 Jul 31;13(1):12391. doi: 10.1038/s41598-023-39262-8
  • Preite NW, Kaminski VL, Borges BM, et al. Myeloid-derived suppressor cells are associated with impaired Th1 and Th17 responses and severe pulmonary paracoccidioidomycosis which is reversed by anti-Gr1 therapy. Front Immunol. 2023 Jan 26;14:1039244. doi: 10.3389/fimmu.2023.1039244
  • Galdino NAL, Loures FV, de Araújo EF, et al. Depletion of regulatory T cells in ongoing paracoccidioidomycosis rescues protective Th1/Th17 immunity and prevents fatal disease outcome. Sci Rep. 2018 Nov 8;8(1):16544. doi: 10.1038/s41598-018-35037-8
  • Kimura A, Kishimoto T. IL-6: regulator of Treg/Th17 balance. Eur J Immunol. 2010 Jul;40(7):1830–5. doi: 10.1002/eji.201040391
  • Kashino SS, Fazioli RA, Cafalli-Favati C, et al. Resistance to paracoccidioides brasiliensis infection is linked to a preferential Th1 immune response, whereas susceptibility is associated with absence of IFN-gamma production. J Interferon Cytokine. 2000;20(1):89–97.
  • Pina A, de Araujo EF, Felonato M, et al. Myeloid dendritic cells (DCs) of mice susceptible to paracoccidioidomycosis suppress T cell responses whereas myeloid and plasmacytoid DCs from resistant mice induce effector and regulatory T cells. Infect Immun. 2013;81(4):1064–1077.
  • Souto JT, Figueiredo F, Furlanetto A, et al. Interferon-γ and Tumor Necrosis Factor-α Determine Resistance to Paracoccidioides brasiliensis Infection in Mice. Am J Pathol. 2000;156(5):1811–1820.
  • Ikeda MAK, de Almeida JRF, Jannuzzi GP, et al. Extracellular Vesicles From Sporothrix brasiliensis Are an Important Virulence Factor That Induce an Increase in Fungal Burden in Experimental Sporotrichosis. Front Microbiol. 2018 Oct 2;9:2286. doi: 10.3389/fmicb.2018.02286