803
Views
0
CrossRef citations to date
0
Altmetric
Review Article

The multiple roles of viral 3Dpol protein in picornavirus infections

, , , & ORCID Icon
Article: 2333562 | Received 18 Dec 2023, Accepted 17 Mar 2024, Published online: 15 Apr 2024

References

  • Solomon T, Lewthwaite P, Perera D, et al. Virology, epidemiology, pathogenesis, and control of enterovirus 71. Lancet Infect Dis. 2010;10(11):778–18. doi: 10.1016/S1473-3099(10)70194-8
  • Zell R, Delwart E, Gorbalenya AE, et al. ICTV virus taxonomy profile: Picornaviridae. J Gen Virol. 2017;98(10):2421–2422. doi: 10.1099/jgv.0.000911
  • Zhu P, Ji W, Li D, et al. Current status of hand-foot-and-mouth disease. J Biomed Sci. 2023;30(1):15. doi: 10.1186/s12929-023-00908-4
  • Zhou J, Li Y, Yin Q, et al. Coxsackievirus A6 pneumonia in a child. Lancet Infect Dis. 2023;23(12):e567. doi: 10.1016/S1473-3099(23)00576-5
  • Dai J, Xu D, Yang C, et al. Severe pneumonia and pathogenic damage in human airway epithelium caused by coxsackievirus B4. Emerg Microbes Infect. 2023;12(2):2261560. doi: 10.1080/22221751.2023.2261560
  • Zhang X-S, Ong JJ, Macgregor L, et al. Transmission dynamics of the 2016-18 outbreak of hepatitis a among men who have sex with men in England and cost-effectiveness analysis of vaccination strategies to prevent future outbreaks. Lancet Reg Health Eur. 2022;19:100426. doi: 10.1016/j.lanepe.2022.100426
  • Carrillo-Santisteve P, Tavoschi L, Severi E, et al. Seroprevalence and susceptibility to hepatitis a in the European Union and European Economic Area: a systematic review. Lancet Infect Dis. 2017;17(10):e306–e319. doi: 10.1016/S1473-3099(17)30392-4
  • Tambyah PA, Oon J, Asli R, et al. An inactivated enterovirus 71 vaccine is safe and immunogenic in healthy adults: a phase I, double blind, randomized, placebo-controlled, study of two dosages. Vaccine. 2019;37(31):4344–4353. doi: 10.1016/j.vaccine.2019.06.023
  • di Nardo A, Ferretti L, Wadsworth J, et al. Evolutionary and ecological drivers shape the emergence and extinction of foot-and-mouth disease virus lineages. Mol Biol Evol. 2021;38(10):4346–4361. doi: 10.1093/molbev/msab172
  • Maggioli Mayara F, Lawson S, de Lima M, et al. Adaptive immune responses following Senecavirus a infection in pigs. J Virol. 2018;92(3):e01717. doi: 10.1128/JVI.01717-17
  • Chen J, Chu Z, Zhang M, et al. Molecular characterization of a novel clade echovirus 3 isolated from patients with hand-foot-and-mouth disease in southwest China. J Med Virol. 2023;95(11):e29202. doi: 10.1002/jmv.29202
  • Peng T, Yang F, Yang F, et al. Structural diversity and biological role of the 5’ untranslated regions of picornavirus. RNA Biol. 2023;20(1):548–562. doi: 10.1080/15476286.2023.2240992
  • Ferrer-Orta C, Ferrero DS, Verdaguer N, et al. Dual role of the foot-and-mouth disease virus 3B1 protein in the replication complex: as protein primer and as an essential component to recruit 3Dpol to membranes. PLoS Path. 2023;19(5):e1011373. doi: 10.1371/journal.ppat.1011373
  • Abdullah Sahibzada W, Je W, Wang X, et al. Advances and breakthroughs in IRES-directed translation and replication of picornaviruses. MBio. 2023;14(2):e00358–23. doi: 10.1128/mbio.00358-23
  • Zhou L, Lu X, Zhao C, et al. Characterization of a novel picornavirus prevalent in experimental rabbits (Oryctolagus cuniculus). Heliyon. 2023;9(5):e15702. doi: 10.1016/j.heliyon.2023.e15702
  • Linden LV, Wolthers KC, van Kuppeveld FJM. Replication and inhibitors of enteroviruses and parechoviruses. Viruses. 2015;7(8):4529–4562. doi: 10.3390/v7082832
  • Jackson T, Belsham GJ. Picornaviruses: a view from 3A. Viruses. 2021;13(3):456. doi: 10.3390/v13030456
  • Paul Aniko V, Rieder E, Kim Dong W, et al. Identification of an RNA hairpin in poliovirus RNA that serves as the primary template in the in vitro uridylylation of VPg. J Virol. 2000;74(22):10359–10370. doi: 10.1128/JVI.74.22.10359-10370.2000
  • Yang Y, Rijnbrand R, McKnight Kevin L, et al. Sequence requirements for viral RNA replication and VPg uridylylation directed by the internal cis-acting replication element (cre) of human rhinovirus type 14. J Virol. 2002;76(15):7485–7494. doi: 10.1128/JVI.76.15.7485-7494.2002
  • Campagnola G, Weygandt M, Scoggin K, et al. Crystal structure of coxsackievirus B3 3Dpol highlights the functional importance of residue 5 in picornavirus polymerases. J Virol. 2008;82(19):9458–9464. doi: 10.1128/JVI.00647-08
  • Love RA, Maegley KA, Yu X, et al. The crystal structure of the RNA-dependent RNA polymerase from human rhinovirus: A dual function target for common cold antiviral therapy. Structure. 2004;12(8):1533–1544. doi: 10.1016/j.str.2004.05.024
  • Thompson AA, Peersen OB. Structural basis for proteolysis-dependent activation of the poliovirus RNA-dependent RNA polymerase. EMBO J. 2004;23(17):3462–3471. doi: 10.1038/sj.emboj.7600357
  • Ferrer-Orta C, Arias A, Perez-Luque R, et al. Structure of foot-and-mouth disease virus RNA-dependent RNA polymerase and its complex with a template-primer RNA. J Biol Chem. 2004;279(45):47212–47221. doi: 10.1074/jbc.M405465200
  • Gong P, Peersen OB. Structural basis for active site closure by the poliovirus RNA-dependent RNA polymerase. Proc Natl Acad Sci USA. 2010;107(52):22505–22510. doi: 10.1073/pnas.1007626107
  • Watkins CL, Kempf BJ, Beaucourt S, et al. Picornaviral polymerase domain exchanges reveal a modular basis for distinct biochemical activities of viral RNA-dependent RNA polymerases. J Biol Chem. 2020;295(31):10624–10637. doi: 10.1074/jbc.RA120.013906
  • Paul AV, Yin J, Mugavero J, et al. A “slide-back” mechanism for the initiation of protein-primed RNA synthesis by the RNA polymerase of poliovirus. J Biol Chem. 2003;278(45):43951–43960. doi: 10.1074/jbc.M307441200
  • Paul AV, van Boom JH, Filippov D, et al. Protein-primed RNA synthesis by purified poliovirus RNA polymerase. Nature. 1998;393(6682):280–284. doi: 10.1038/30529
  • Paul Aniko V, Peters J, Mugavero J, et al. Biochemical and genetic studies of the VPg uridylylation reaction catalyzed by the RNA polymerase of poliovirus. J Virol. 2003;77(2):891–904. doi: 10.1128/JVI.77.2.891-904.2003
  • Sheng Z, Zhu J, Deng Y-N, et al. Sumoylation modification-mediated cell death. Open Biol. 2021;11(7):210050. doi: 10.1098/rsob.210050
  • Zhu X, Qiu C, Wang Y, et al. FGFR1 SUMOylation coordinates endothelial angiogenic signaling in angiogenesis. Proc Natl Acad Sci U S A. 2022;119(26):e2202631119. doi: 10.1073/pnas.2202631119
  • Buschmann T, Fuchs SY, Lee C-G, et al. Sumo-1 modification of mdm2 prevents its self-ubiquitination and increases mdm2 ability to ubiquitinate p53. Cell. 2000;101(7):753–762. doi: 10.1016/S0092-8674(00)80887-9
  • Bernier-Villamor V, Sampson DA, Matunis MJ, et al. Structural basis for E2-mediated SUMO conjugation revealed by a complex between ubiquitin-conjugating enzyme Ubc9 and RanGAP1. Cell. 2002;108(3):345–356. doi: 10.1016/S0092-8674(02)00630-X
  • Liu Y, Zheng Z, Shu B, et al. SUMO modification stabilizes enterovirus 71 polymerase 3D to facilitate viral replication. J Virol. 2016;90(23):10472–10485. doi: 10.1128/JVI.01756-16
  • Hao H, Hao S, Chen H, et al. N6-methyladenosine modification and METTL3 modulate enterovirus 71 replication. Nucleic Acids Res. 2019;47(1):362–374. doi: 10.1093/nar/gky1007
  • Imai S-I, Armstrong CM, Kaeberlein M, et al. Transcriptional silencing and longevity protein Sir2 is an NAD-dependent histone deacetylase. Nature. 2000;403(6771):795–800. doi: 10.1038/35001622
  • Jia X, Liu H, Ren X, et al. Nucleolar protein NOC4L inhibits tumorigenesis and progression by attenuating SIRT1-mediated p53 deacetylation. Oncogene. 2022;41(39):4474–4484. doi: 10.1038/s41388-022-02447-y
  • Wang W, Li Y, Zhang Y, et al. SIRT1 mediates the inhibitory effect of Dapagliflozin on EndMT by inhibiting the acetylation of endothelium Notch1. Cardiovasc Diabetol. 2023;22(1):331. doi: 10.1186/s12933-023-02040-x
  • Han Y, Wang L, Cui J, et al. SIRT1 inhibits EV71 genome replication and RNA translation by interfering with the viral polymerase and 5‘UTR RNA. J Cell Sci. 2016;129(24):4534–4547. doi: 10.1242/jcs.193698
  • Liu Y-C, Kuo R-L, Lin J-Y, et al. Cytoplasmic viral RNA-dependent RNA polymerase disrupts the intracellular splicing machinery by entering the nucleus and interfering with Prp8. PLoS Path. 2014;10(6):e1004199. doi: 10.1371/journal.ppat.1004199
  • Lee K-M, Wu C-C, Wu S-E, et al. The RNA-dependent RNA polymerase of enterovirus A71 associates with ribosomal proteins and positively regulates protein translation. RNA Biol. 2020;17(4):608–622. doi: 10.1080/15476286.2020.1722448
  • van der Schaar HM, Dorobantu CM, Albulescu L, et al. Fat(al) attraction: picornaviruses usurp lipid transfer at membrane contact sites to create replication organelles. Trends Microbiol. 2016;24(7):535–546. doi: 10.1016/j.tim.2016.02.017
  • Belov GA, van Kuppeveld FJM. (+)RNA viruses rewire cellular pathways to build replication organelles. Curr Opin Virol. 2012;2(6):740–747. doi: 10.1016/j.coviro.2012.09.006
  • Xiao X, Lei X, Zhang Z, et al. Enterovirus 3A facilitates viral replication by promoting phosphatidylinositol 4-kinase IIIβ-ACBD3 interaction. J Virol. 2017;91(19):e00791–17. doi: 10.1128/JVI.00791-17
  • Greninger Alexander L, Knudsen Giselle M, Betegon M, et al. The 3A protein from multiple picornaviruses utilizes the golgi adaptor protein ACBD3 to recruit PI4KIIIβ. J Virol. 2012;86(7):3605–3616. doi: 10.1128/JVI.06778-11
  • Hsu N-Y, Ilnytska O, Belov G, et al. Viral reorganization of the secretory pathway generates distinct organelles for RNA replication. Cell. 2010;141(5):799–811. doi: 10.1016/j.cell.2010.03.050
  • Zhang Q, Li S, Lei P, et al. ANXA2 facilitates enterovirus 71 infection by interacting with 3D polymerase and PI4KB to assist the assembly of replication organelles. Virol Sin. 2021;36(6):1387–1399. doi: 10.1007/s12250-021-00417-4
  • Mu Z, Wang L, Deng W, et al. Structural insight into the Ragulator complex which anchors mTORC1 to the lysosomal membrane. Cell Discov. 2017;3(1):17049. doi: 10.1038/celldisc.2017.49
  • Su M-Y, Morris KL, Kim DJ, et al. Hybrid structure of the RagA/C-Ragulator mTORC1 activation complex. Mol Cell. 2017;68(5):835–846.e3. doi: 10.1016/j.molcel.2017.10.016
  • Wang X, Hu Z, Zhang W, et al. Inhibition of lysosome-tethered ragulator-rag-3D complex restricts the replication of enterovirus 71 and coxsackie A16. J Cell Bio. 2023;222(12):e202303108. doi: 10.1083/jcb.202303108
  • Huang P-N, Jheng J-R, Arnold JJ, et al. UGGT1 enhances enterovirus 71 pathogenicity by promoting viral RNA synthesis and viral replication. PLoS Path. 2017;13(5):e1006375. doi: 10.1371/journal.ppat.1006375
  • Ning Z, Zhong X, Wu Y, et al. β-asarone improves cognitive impairment and alleviates autophagy in mice with vascular dementia via the cAMP/PKA/CREB pathway. Phytomedicine. 2023;123:155215. doi: 10.1016/j.phymed.2023.155215
  • Xu J, Kong L, Oliver BA, et al. Constitutively active autophagy in macrophages dampens inflammation through metabolic and post-transcriptional regulation of cytokine production. Cell Rep. 2023;42(7):112708. doi: 10.1016/j.celrep.2023.112708
  • Xiang Q, Wan P, Yang G, et al. Beclin1 binds to enterovirus 71 3D protein to promote the virus replication. Viruses. 2020;12(7):756. doi: 10.3390/v12070756
  • Fu Y, Xu W, Chen D, et al. Enterovirus 71 induces autophagy by regulating has-miR-30a expression to promote viral replication. Antiviral Res. 2015;124:43–53. doi: 10.1016/j.antiviral.2015.09.016
  • Abernathy E, Mateo R, Majzoub K, et al. Differential and convergent utilization of autophagy components by positive-strand RNA viruses. PLoS Biol. 2019;17(1):e2006926. doi: 10.1371/journal.pbio.2006926
  • Zhong Y, Wang QJ, Li X, et al. Distinct regulation of autophagic activity by Atg14L and Rubicon associated with beclin 1-phosphatidylinositol-3-kinase complex. Nat Cell Biol. 2009;11(4):468–476. doi: 10.1038/ncb1854
  • Chen X, Wang K, Xing Y, et al. Coronavirus membrane-associated papain-like proteases induce autophagy through interacting with Beclin1 to negatively regulate antiviral innate immunity. Protein Cell. 2014;5(12):912–927. doi: 10.1007/s13238-014-0104-6
  • Jo DS, Park NY, Cho D-H. Peroxisome quality control and dysregulated lipid metabolism in neurodegenerative diseases. Exp Mol Med. 2020;52(9):1486–1495. doi: 10.1038/s12276-020-00503-9
  • Liu J, Lu W, Shi B, et al. Peroxisomal regulation of redox homeostasis and adipocyte metabolism. Redox Biol. 2019;24:101167. doi: 10.1016/j.redox.2019.101167
  • You L, Chen J, Liu W, et al. Enterovirus 71 induces neural cell apoptosis and autophagy through promoting ACOX1 downregulation and ROS generation. Virulence. 2020;11(1):537–553. doi: 10.1080/21505594.2020.1766790
  • Martinon F, Mayor A, Tschopp J. The inflammasomes: guardians of the body. Annu Rev Immunol. 2009;27(1):229–265. doi: 10.1146/annurev.immunol.021908.132715
  • Akira S, Uematsu S, Takeuchi O. Pathogen recognition and innate immunity. Cell. 2006;124(4):783–801. doi: 10.1016/j.cell.2006.02.015
  • García-Sastre A. Ten Strategies of interferon evasion by viruses. Cell Host Microbe. 2017;22(2):176–184. doi: 10.1016/j.chom.2017.07.012
  • Wang W, Xiao F, Wan P, et al. EV71 3D protein binds with NLRP3 and enhances the assembly of inflammasome complex. PLoS Path. 2017;13(1):e1006123. doi: 10.1371/journal.ppat.1006123
  • Liu G, Lee J-H, Parker ZM, et al. ISG15-dependent activation of the sensor MDA5 is antagonized by the SARS-CoV-2 papain-like protease to evade host innate immunity. Nat Microbiol. 2021;6(4):467–478. doi: 10.1038/s41564-021-00884-1
  • Kato H, Takeuchi O, Sato S, et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature. 2006;441(7089):101–105. doi: 10.1038/nature04734
  • Kuo R-L, Chen C-J, Wang Robert YL, et al. Role of enteroviral RNA-dependent RNA polymerase in regulation of MDA5-mediated beta interferon activation. J Virol. 2019;93(10):e00132–19. doi: 10.1128/JVI.00132-19
  • Yang Z, Zheng H, Li H, et al. The expression of IFN-β is suppressed by the viral 3D polymerase via its impact on PGAM5 expression during enterovirus D68 infection. Virus Res. 2021;304:198549. doi: 10.1016/j.virusres.2021.198549
  • Tan C, Qin X, Tan Y, et al. SHFL inhibits enterovirus A71 infection by triggering degradation of viral 3Dpol protein via the ubiquitin–proteasome pathway. J Med Virol. 2023;95(8):e29030. doi: 10.1002/jmv.29030
  • Li L, Bai J, Fan H, et al. E2 ubiquitin-conjugating enzyme UBE2L6 promotes senecavirus a proliferation by stabilizing the viral RNA polymerase. PLoS Path. 2020;16(10):e1008970. doi: 10.1371/journal.ppat.1008970
  • Lawrence P, Schafer EA, Rieder E. The nuclear protein Sam68 is cleaved by the FMDV 3C protease redistributing Sam68 to the cytoplasm during FMDV infection of host cells. Virology. 2012;425(1):40–52. doi: 10.1016/j.virol.2011.12.019
  • Marsh K, Soros V, Cochrane A. Selective translational repression of HIV-1 RNA by Sam68DeltaC occurs by altering PABP1 binding to unspliced viral RNA. Retrovirology. 2008;5(1):97. doi: 10.1186/1742-4690-5-97
  • McBride AE, Schlegel A, Kirkegaard K. Human protein Sam68 relocalization and interaction with poliovirus RNA polymerase in infected cells. Proc Natl Acad Sci U S A. 1996;93(6):2296–2301. doi: 10.1073/pnas.93.6.2296
  • Rai DK, Lawrence P, Kloc A, et al. Analysis of the interaction between host factor Sam68 and viral elements during foot-and-mouth disease virus infections. Virol J. 2015;12(1):224. doi: 10.1186/s12985-015-0452-8
  • Choudhury SM, Ma X, Zeng Z, et al. Senecavirus a 3D interacts with NLRP3 to induce IL-1β production by activating NF-κB and ion channel signals. Microbiol Spectr. 2022;10(2):e02097–21. doi: 10.1128/spectrum.02097-21
  • Zhou Y, Wu W, Xie L, et al. Cellular RNA helicase DDX1 is involved in transmissible gastroenteritis virus nsp14-induced interferon-beta production. Front Immunol. 2017;8. doi: 10.3389/fimmu.2017.00940
  • Edgcomb SP, Carmel AB, Naji S, et al. DDX1 is an RNA-dependent ATPase involved in HIV-1 rev function and virus replication. J Mol Biol. 2012;415(1):61–74. doi: 10.1016/j.jmb.2011.10.032
  • Xue Q, Liu H, Zeng Q, et al. The DEAD-Box RNA helicase DDX1 interacts with the viral protein 3D and inhibits foot-and-mouth disease virus replication. Virol Sin. 2019;34(6):610–617. doi: 10.1007/s12250-019-00148-7
  • Sarry M, Caignard G, Dupré J, et al. Host-specific interplay between foot-and-mouth disease virus 3D polymerase and the type-I interferon pathway. Viruses. 2023;15(3):666. doi: 10.3390/v15030666
  • Wang J, Hu Y, Zheng M. Enterovirus A71 antivirals: past, present, and future. Acta Pharm Sin B. 2022;12(4):1542–1566. doi: 10.1016/j.apsb.2021.08.017
  • Hu Y, Musharrafieh R, Zheng M, et al. Enterovirus D68 antivirals: past, present, and future. ACS Infect Dis. 2020;6(7):1572–1586. doi: 10.1021/acsinfecdis.0c00120
  • Laajala M, Reshamwala D, Marjomäki V. Therapeutic targets for enterovirus infections. Expert Opin Ther Targets. 2020;24(8):745–757. doi: 10.1080/14728222.2020.1784141
  • Liang C, Tian L, Liu Y, et al. A promising antiviral candidate drug for the COVID-19 pandemic: a mini-review of remdesivir. Eur J Med Chem. 2020;201:112527. doi: 10.1016/j.ejmech.2020.112527
  • González-Grande R, Jiménez-Pérez M, González Arjona C, et al. New approaches in the treatment of hepatitis C. World J Gastroenterol. 2016;22(4):1421–1432. doi: 10.3748/wjg.v22.i4.1421
  • Crotty S, Maag D, Arnold JJ, et al. The broad-spectrum antiviral ribonucleoside ribavirin is an RNA virus mutagen. Nat Med. 2000;6(12):1375–1379. doi: 10.1038/82191
  • Nikunjkumar P, Tamil Selvan RP, Bhanuprakash V. Ribavirin as a curative and prophylactic agent against foot and mouth disease virus infection in C57BL/6 suckling and adult mice model. Virusdisease. 2021;32(4):737–747. doi: 10.1007/s13337-021-00746-8
  • Graci Jason D, Harki Daniel A, Korneeva Victoria S, et al. Lethal mutagenesis of poliovirus mediated by a mutagenic pyrimidine analogue. J Virol. 2007;81(20):11256–11266. doi: 10.1128/JVI.01028-07
  • Graci JD, Too K, Smidansky ED, et al. Lethal mutagenesis of picornaviruses with N-6-modified purine nucleoside analogues. Antimicrob Agents Chemother. 2008;52(3):971–979. doi: 10.1128/AAC.01056-07
  • Harki DA, Graci JD, Galarraga JE, et al. Synthesis and antiviral activity of 5-substituted cytidine analogues: identification of a potent inhibitor of viral RNA-dependent RNA polymerases. J Med Chem. 2006;49(21):6166–6169. doi: 10.1021/jm060872x
  • Yin Z, Chen Y-L, Schul W, et al. An adenosine nucleoside inhibitor of dengue virus. Proc Natl Acad Sci U S A. 2009;106(48):20435–20439. doi: 10.1073/pnas.0907010106
  • Deng C-L, Yeo H, Ye H-Q, et al. Inhibition of enterovirus 71 by adenosine analog NITD008. J Virol. 2014;88(20):11915–11923. doi: 10.1128/JVI.01207-14
  • Shang L, Wang Y, Qing J, et al. An adenosine nucleoside analogue NITD008 inhibits EV71 proliferation. Antiviral Res. 2014;112:47–58. doi: 10.1016/j.antiviral.2014.10.009
  • Yan L, Cao R, Zhang H, et al. Design, synthesis and evaluation of 2’-acetylene-7-deaza-adenosine phosphoamidate derivatives as anti-EV71 and anti-EV-D68 agents. Eur J Med Chem. 2021;226:113852. doi: 10.1016/j.ejmech.2021.113852
  • Zhang Z, Yang E, Hu C, et al. Cell-based high-throughput screening assay identifies 2‘,2’-difluoro-2’-deoxycytidine gemcitabine as a potential antipoliovirus agent. ACS Infect Dis. 2017;3(1):45–53. doi: 10.1021/acsinfecdis.6b00116
  • Zheng L, Wang Q, Yang X, et al. Antiviral activity of Fnc, 2’-deoxy-2’-β-fluoro-4’-azidocytidine, against human and duck HBV replication. Antivir Ther. 2012;17(4):679–687. doi: 10.3851/IMP2094
  • Wang R-R, Yang Q-H, Luo R-H, et al. Azvudine, a novel nucleoside reverse transcriptase inhibitor showed good drug combination features and better inhibition on drug-resistant strains than lamivudine in vitro. PLoS One. 2014;9(8):e105617. doi: 10.1371/journal.pone.0105617
  • Xu N, Yang J, Zheng B, et al. The pyrimidine analog FNC potently inhibits the replication of multiple enteroviruses. J Virol. 2020;94(9):e00204–20. doi: 10.1128/JVI.00204-20
  • Brown AJ, Won JJ, Graham RL, et al. Broad spectrum antiviral remdesivir inhibits human endemic and zoonotic deltacoronaviruses with a highly divergent RNA dependent RNA polymerase. Antiviral Res. 2019;169:104541. doi: 10.1016/j.antiviral.2019.104541
  • Warren TK, Jordan R, Lo MK, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016;531(7594):381–385. doi: 10.1038/nature17180
  • Ye W, Yao M, Dong Y, et al. Remdesivir (GS-5734) impedes enterovirus replication through viral RNA synthesis inhibition. Front Microbiol. 2020;11:1105. doi: 10.3389/fmicb.2020.01105
  • Bermingham WH, Canning B, Wilton T, et al. Case report: clearance of longstanding, immune-deficiency-associated, vaccine-derived polio virus infection following remdesivir therapy for chronic SARS-CoV-2 infection. Front Immunol. 2023;14:1135834. doi: 10.3389/fimmu.2023.1135834
  • Nishi T, Fukai K, Masujin K, et al. Administration of the antiviral agent T-1105 fully protects pigs from foot-and-mouth disease infection. Antiviral Res. 2022;208:105425. doi: 10.1016/j.antiviral.2022.105425
  • Furuta Y, Gowen BB, Takahashi K, et al. Favipiravir (T-705), a novel viral RNA polymerase inhibitor. Antiviral Res. 2013;100(2):446–454. doi: 10.1016/j.antiviral.2013.09.015
  • Lumby CK, Zhao L, Oporto M, et al. Favipiravir and zanamivir cleared infection with influenza B in a severely immunocompromised child. Clin Infect Dis. 2020;71(7):e191–e194. doi: 10.1093/cid/ciaa023
  • Sasaki-Tanaka R, Shibata T, Okamoto H, et al. Favipiravir inhibits hepatitis a virus infection in human hepatocytes. Int J Mol Sci. 2022;23(5):2631. doi: 10.3390/ijms23052631
  • Kempf Brian J, Watkins Colleen L, Peersen Olve B, et al. Picornavirus RNA recombination counteracts error catastrophe. J Virol. 2019;93(14):e00652–19. doi: 10.1128/JVI.00652-19
  • Sierra S, Dávila M, Lowenstein PR, et al. Response of foot-and-mouth disease virus to increased mutagenesis: influence of viral load and fitness in loss of infectivity. J Virol. 2000;74(18):8316–8323. doi: 10.1128/JVI.74.18.8316-8323.2000
  • Pariente N, Airaksinen A, Domingo E. Mutagenesis versus inhibition in the efficiency of extinction of foot-and-mouth disease virus. J Virol. 2003;77(12):7131–7138. doi: 10.1128/JVI.77.12.7131-7138.2003
  • Agudo R, Arias A, Pariente N, et al. Molecular characterization of a dual inhibitory and mutagenic activity of 5-fluorouridine triphosphate on viral RNA synthesis. Implications for lethal mutagenesis. J Mol Biol. 2008;382(3):652–666. doi: 10.1016/j.jmb.2008.07.033
  • Farhat A, Malecki E, Bonaterra GA, et al. Cytostatic/cytotoxic effects of 5-fluorouridine nucleolipids on colon, hepatocellular, and renal carcinoma cells: In vitro identification of a potential cytotoxic multi-anticancer drug. Chem Biodivers. 2014;11(3):469–482. doi: 10.1002/cbdv.201300347
  • Graci JD, Cameron CE. Mechanisms of action of ribavirin against distinct viruses. Rev Med Virol. 2006;16(1):37–48. doi: 10.1002/rmv.483
  • De la Torre JC, Alarcón B, Martínez-Salas E, et al. Ribavirin cures cells of a persistent infection with foot-and-mouth disease virus in vitro. J Virol. 1987;61(1):233–235. doi: 10.1128/jvi.61.1.233-235.1987
  • Choi JH, Jeong K, Kim SM, et al. Synergistic effect of ribavirin and vaccine for protection during early infection stage of foot-and-mouth disease. J Vet Sci. 2018;19(6):788–797. doi: 10.4142/jvs.2018.19.6.788
  • Crotty S, Cameron CE, Andino R. RNA virus error catastrophe: direct molecular test by using ribavirin. Proc Natl Acad Sci U S A. 2001;98(12):6895–6900. doi: 10.1073/pnas.111085598
  • Vignuzzi M, Stone JK, Andino R. Ribavirin and lethal mutagenesis of poliovirus: molecular mechanisms, resistance and biological implications. Virus Res. 2005;107(2):173–181. doi: 10.1016/j.virusres.2004.11.007
  • Wu R, Smidansky ED, Oh HS, et al. Synthesis of a 6-methyl-7-deaza analogue of adenosine that potently inhibits replication of polio and dengue viruses. J Med Chem. 2010;53(22):7958–7966. doi: 10.1021/jm100593s
  • Carroll SS, Tomassini JE, Bosserman M, et al. Inhibition of hepatitis C virus RNA replication by 2’-modified nucleoside analogs. J Biol Chem. 2003;278(14):11979–11984. doi: 10.1074/jbc.M210914200
  • Goris N, De Palma A, Toussaint J-F, et al. 2’-C-methylcytidine as a potent and selective inhibitor of the replication of foot-and-mouth disease virus. Antiviral Res. 2007;73(3):161–168. doi: 10.1016/j.antiviral.2006.09.007
  • Lanko K, Ma Y, Delang L, et al. Antiviral effects of selected nucleoside analogues against human parechoviruses A1 and A3. Antiviral Res. 2019;162:51–53. doi: 10.1016/j.antiviral.2018.12.009
  • Masmoudi F, Santos-Ferreira N, Pajkrt D, et al. Evaluation of 3D human intestinal organoids as a platform for EV-A71 antiviral drug discovery. Cells. 2023;12(8):1138. doi: 10.3390/cells12081138
  • Harrison DN, Gazina EV, Purcell DF, et al. Amiloride derivatives inhibit coxsackievirus B3 RNA replication. J Virol. 2008;82(3):1465–1473. doi: 10.1128/JVI.01374-07
  • Gazina EV, Smidansky ED, Holien JK, et al. Amiloride is a competitive inhibitor of coxsackievirus B3 RNA polymerase. J Virol. 2011;85(19):10364–10374. doi: 10.1128/JVI.05022-11
  • Ogram SA, Boone CD, McKenna R, et al. Amiloride inhibits the initiation of coxsackievirus and poliovirus RNA replication by inhibiting VPg uridylylation. Virology. 2014;464-465:87–97. doi: 10.1016/j.virol.2014.06.025
  • Holien JK, Gazina EV, Elliott RW, et al. Computational analysis of amiloride analogue inhibitors of coxsackievirus B3 RNA polymerase. J Proteomics Bioinform. 2014;s9(Suppl 9):004. doi: 10.4172/jpb.S9-004
  • Levi LI, Gnädig NF, Beaucourt S, et al. Fidelity variants of RNA dependent RNA polymerases uncover an indirect, mutagenic activity of amiloride compounds. PLoS Path. 2010;6(10):e1001163. doi: 10.1371/journal.ppat.1001163
  • Gong M-J, Chang Y-Y, Shao J, et al. Antiviral effect of amiloride on replication of foot and mouth disease virus in cell culture. Microbial Pathogenesis. 2019;135:103638. doi: 10.1016/j.micpath.2019.103638
  • Chern J-H, Shia K-S, Hsu T-A, et al. Design, synthesis, and structure-activity relationships of pyrazolo[3,4-d]pyrimidines: a novel class of potent enterovirus inhibitors. Bioorg Med Chem Lett. 2004;14(10):2519–2525. doi: 10.1016/j.bmcl.2004.02.092
  • Chen T-C, Chang H-Y, Lin P-F, et al. Novel antiviral agent DTriP-22 targets RNA-dependent RNA polymerase of enterovirus 71. Antimicrob Agents Chemother. 2009;53(7):2740–2747. doi: 10.1128/AAC.00101-09
  • Hung H-C, Chen T-C, Fang M-Y, et al. Inhibition of enterovirus 71 replication and the viral 3D polymerase by aurintricarboxylic acid. J Antimicrob Chemother. 2010;65(4):676–683. doi: 10.1093/jac/dkp502
  • Durk RC, Singh K, Cornelison CA, et al. Inhibitors of foot and mouth disease virus targeting a novel pocket of the RNA-dependent RNA polymerase. PloS One. 2010;5(12):e15049. doi: 10.1371/journal.pone.0015049
  • Rai DK, Schafer EA, Singh K, et al. Repeated exposure to 5D9, an inhibitor of 3D polymerase, effectively limits the replication of foot-and-mouth disease virus in host cells. Antiviral Res. 2013;98(3):380–385. doi: 10.1016/j.antiviral.2013.03.022
  • van der Linden L, Vives-Adrián L, Selisko B, et al. The RNA template channel of the RNA-dependent RNA polymerase as a target for development of antiviral therapy of multiple genera within a virus family. PloS Path. 2015;11(3):e1004733. doi: 10.1371/journal.ppat.1004733
  • Li L, Wang M, Chen Y, et al. Structure of the enterovirus D68 RNA-dependent RNA polymerase in complex with NADPH implicates an inhibitor binding site in the RNA template tunnel. J Struct Biol. 2020;211(1):107510. doi: 10.1016/j.jsb.2020.107510
  • Campagnola G, Gong P, Peersen OB. High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors. Antiviral Res. 2011;91(3):241–251. doi: 10.1016/j.antiviral.2011.06.006
  • Hsu J-A, Yeh J-Y, Lin T-J, et al. Identification of BPR3P0128 as an inhibitor of cap-snatching activities of influenza virus. Antimicrob Agents Chemother. 2012;56(2):647–657. doi: 10.1128/AAC.00125-11
  • Velu AB, Chen G-W, Hsieh P-T, et al. BPR-3P0128 inhibits RNA-dependent RNA polymerase elongation and VPg uridylylation activities of enterovirus 71. Antiviral Res. 2014;112:18–25. doi: 10.1016/j.antiviral.2014.10.003
  • Wishart DS, Feunang YD, Guo AC, et al. DrugBank 5.0: a major update to the DrugBank database for 2018. Nucleic Acids Res. 2018;46(D1):D1074–D1082. doi: 10.1093/nar/gkx1037
  • Theerawatanasirikul S, Lueangaramkul V, Semkum P, et al. Antiviral mechanisms of sorafenib against foot-and-mouth disease virus via c-RAF and AKT/PI3K pathways. Vet Res Commun. 2023;48(1):329–343. doi: 10.1007/s11259-023-10211-0
  • Liu X, Xu Z, Liang J, et al. Identification of a novel acylthiourea-based potent broad-spectrum inhibitor for enterovirus 3D polymerase in vitro and in vivo. Antiviral Res. 2023;213:105583. doi: 10.1016/j.antiviral.2023.105583
  • Jeong K-W, Lee J-H, Park S-M, et al. Synthesis and in-vitro evaluation of 2-amino-4-arylthiazole as inhibitor of 3D polymerase against foot-and-mouth disease (FMD). European Journal Of Medicinal Chemistry. 2015;102:387–397. doi: 10.1016/j.ejmech.2015.08.020
  • Theerawatanasirikul S, Semkum P, Lueangaramkul V, et al. Non-nucleoside inhibitors decrease foot-and-mouth disease virus replication by blocking the viral 3Dpol. Viruses. 2023;15(1):124. doi: 10.3390/v15010124
  • Lanko K, Shi C, Patil S, et al. Assessing in vitro resistance development in enterovirus A71 in the context of combination antiviral treatment. ACS Infect Dis. 2021;7(10):2801–2806. doi: 10.1021/acsinfecdis.0c00872
  • Hu Q, Sun W, Wang C, et al. Recent advances of cocktail chemotherapy by combination drug delivery systems. Adv Drug Deliv Rev. 2016;98:19–34. doi: 10.1016/j.addr.2015.10.022