330
Views
0
CrossRef citations to date
0
Altmetric
Signature reviews

Pathogenesis and virulence of Heartland virus

, , , , , & ORCID Icon show all
Article: 2348252 | Received 15 Oct 2023, Accepted 23 Apr 2024, Published online: 07 May 2024

References

  • McMullan LK, Folk SM, Kelly AJ, et al. A new phlebovirus associated with severe febrile illness in Missouri. N Engl J Med. 2012;367(9):834–10. doi: 10.1056/NEJMoa1203378
  • Yu XJ, Liang MF, Zhang SY, et al. Fever with thrombocytopenia associated with a novel bunyavirus in China. N Engl J Med. 2011;364(16):1523–1532. doi: 10.1056/NEJMoa1010095
  • Kuhn JH, Adkins S, Alkhovsky SV, et al. 2022 taxonomic update of phylum negarnaviricota (Riboviria: orthornavirae), including the large orders bunyavirales and Mononegavirales. Arch Virol. 2022;167(12):2857–2906. doi: 10.1007/s00705-022-05546-z
  • Savage HM, Godsey MS, Lambert A, et al. First detection of heartland virus (bunyaviridae: phlebovirus) from field collected arthropods. Am J Trop Med Hyg. 2013;89(3):445–452. doi: 10.4269/ajtmh.13-0209
  • Savage HM, Godsey MS Jr., Panella NA, et al. Surveillance for heartland virus (bunyaviridae: phlebovirus) in Missouri during 2013: first detection of virus in adults of amblyomma americanum (Acari: ixodidae). J Med Entomol. 2016;53(3):607–612. doi: 10.1093/jme/tjw028
  • Godsey MS, Savage HM, Burkhalter KL, et al. Transmission of heartland virus (bunyaviridae: phlebovirus) by experimentally infected amblyomma americanum (Acari: ixodidae). J Med Entomol. 2016;53(5):1226–1233. doi: 10.1093/jme/tjw080
  • Tuten HC, Burkhalter KL, Noel KR, et al. Heartland virus in humans and ticks, Illinois, USA, 2018–2019. Emerg Infect Dis. 2020;26(7):1548–1552. doi: 10.3201/eid2607.200110
  • Newman BC, Sutton WB, Moncayo AC, et al. Heartland virus in Lone star ticks, Alabama, USA. Emerg Infect Dis. 2020;26(8):1954–1956. doi: 10.3201/eid2608.200494
  • Romer Y, Adcock K, Wei Z, et al. Isolation of heartland virus from Lone star ticks, Georgia, USA, 2019. Emerg Infect Dis. 2022;28(4):786–792. doi: 10.3201/eid2804.211540
  • Aziati ID, Jnr DM, Antia A, et al. Prevalence of bourbon and heartland viruses in field collected ticks at an environmental field station in st. Louis County, Missouri, USA. Ticks Tick Borne Dis. 2023;14(1):102080. doi: 10.1016/j.ttbdis.2022.102080
  • Brault AC, Savage HM, Duggal NK, et al. Heartland virus epidemiology, vector association, and disease potential. Viruses. 2018;10(9):498. doi: 10.3390/v10090498
  • Staples JE, Pastula DM, Panella AJ, et al. Investigation of heartland virus disease throughout the United States, 2013–2017. Open Forum Inf Dis. 2020;7(5):ofaa125. doi: 10.1093/ofid/ofaa125
  • Cumbie AN, Trimble RN, Eastwood G. Pathogen spillover to an invasive tick species: first detection of Bourbon virus in haemaphysalis longicornis in the United States. Pathogens. 2022;11(4):11. doi: 10.3390/pathogens11040454
  • Raney WR, Perry JB, Hermance ME. Transovarial transmission of Heartland virus by invasive Asian longhorned ticks under laboratory conditions. Emerg Infect Dis. 2022;28(3):726–729. doi: 10.3201/eid2803.210973
  • Riemersma KK, Komar N. Heartland virus neutralizing antibodies in vertebrate wildlife, United States, 2009–2014. Emerg Infect Dis. 2015;21(10):1830–1833. doi: 10.3201/eid2110.150380
  • Bosco-Lauth AM, Panella NA, Root JJ, et al. Serological investigation of heartland virus (bunyaviridae: phlebovirus) exposure in wild and domestic animals adjacent to human case sites in Missouri 2012–2013. Am J Trop Med Hyg. 2015;92(6):1163–1167. doi: 10.4269/ajtmh.14-0702
  • Clarke LL, Ruder MG, Mead DG, et al. Heartland virus exposure in white-tailed deer in the Southeastern United States, 2001–2015. Am J Trop Med Hyg. 2018;99(5):1346–1349. doi: 10.4269/ajtmh.18-0555
  • Yamanaka A, Kirino Y, Fujimoto S, et al. Direct transmission of severe fever with thrombocytopenia syndrome virus from domestic cat to veterinary personnel. Emerg Infect Dis. 2020;26(12):2994–2998. doi: 10.3201/eid2612.191513
  • Tang X, Wu W, Wang H, et al. Human-to-human transmission of severe fever with thrombocytopenia syndrome bunyavirus through contact with infectious blood. J Infect Dis. 2013;207(5):736–739. doi: 10.1093/infdis/jis748
  • Fang X, Hu J, Peng Z, et al. Epidemiological and clinical characteristics of severe fever with thrombocytopenia syndrome bunyavirus human-to-human transmission. PLOS Negl Trop Dis. 2021;15(4):e0009037. doi: 10.1371/journal.pntd.0009037
  • Pastula DM, Turabelidze G, Yates KF, et al. Notes from the field: heartland virus disease - United States, 2012-2013. MMWR Morb Mortal Wkly Rep. 2014;63(12):270–271.
  • Decker MD, Morton CT, Moncayo AC. One confirmed and 2 suspected cases of heartland virus disease. Clin Infect Dis. 2020;71(12):3237–3240. doi: 10.1093/cid/ciaa647
  • Muehlenbachs A, Fata CR, Lambert AJ, et al. Heartland virus-associated death in tennessee. Clin Infect Dis. 2014;59(6):845–850. doi: 10.1093/cid/ciu434
  • Fill MA, Compton ML, EC M, et al. Novel clinical and pathologic findings in a heartland virus-associated death. Clin Infect Dis. 2017;64:510–512. doi: 10.1093/cid/ciw766
  • Carlson AL, Pastula DM, Lambert AJ, et al. Heartland virus and hemophagocytic lymphohistiocytosis in immunocompromised patient, Missouri, USA. Emerg Infect Dis. 2018;24(5):893–897. doi: 10.3201/eid2405.171802
  • Ahlers CG, Matthews H, Perez R, et al. Secondary hemophagocytic lymphohistiocytosis due to heartland virus. BMJ Case Rep. 2022;15(12):e253082. doi: 10.1136/bcr-2022-253082
  • Liu S, Kannan S, Meeks M, et al. Fatal case of heartland virus disease acquired in the Mid-Atlantic Region, United States. Emerg Infect Dis. 2023;29(5):992–996. doi: 10.3201/eid2905.221488
  • Bosco-Lauth AM, Calvert AE, Root JJ, et al. Vertebrate host susceptibility to heartland virus. Emerg Infect Dis. 2016;22(12):2070–2077. doi: 10.3201/eid2212.160472
  • Clarke LL, Ruder MG, Mead D, et al. Experimental infection of white-tailed deer (odocoileus virginanus) with heartland virus. Am J Trop Med Hyg. 2018;98(4):1194–1196. doi: 10.4269/ajtmh.17-0963
  • Fujii H, Tani H, Egawa K, et al. Susceptibility of type I interferon receptor knock-out mice to heartland bandavirus (HRTV) infection and efficacy of favipiravir and ribavirin in the treatment of the mice infected with HRTV. Viruses. 2022;14(8):1668. doi: 10.3390/v14081668
  • Fujii H, Fukushi S, Yoshikawa T, et al. Pathological and virological findings of type I interferon receptor knockout mice upon experimental infection with heartland virus. Virus Res. 2023;340:199301. doi: 10.1016/j.virusres.2023.199301
  • Reynolds ES, Wooldridge JT, Stevenson HL, et al. The lone star tick, amblyomma americanum, salivary factors exacerbate the clinical outcome of heartland virus disease in a small animal model. Sci Rep. 2023;13(1):13304. doi: 10.1038/s41598-023-40397-x
  • Taniguchi S, Inagaki T, Tajima S, et al. Reverse genetics system for Heartland bandavirus: NSs protein contributes to Heartland bandavirus virulence. J Virol. 2022;96(7):e0004922. doi: 10.1128/jvi.00049-22
  • Westover JB, Rigas JD, Van Wettere AJ, et al. Heartland virus infection in hamsters deficient in type I interferon signaling: protracted disease course ameliorated by favipiravir. Virology. 2017;511:175–183. doi: 10.1016/j.virol.2017.08.004
  • Carty M, Guy C, Bowie AG. Detection of viral infections by innate immunity. Biochem Pharmacol. 2021;183:114316. doi: 10.1016/j.bcp.2020.114316
  • Min YQ, Ning YJ, Wang H, et al. A RIG-I–like receptor directs antiviral responses to a bunyavirus and is antagonized by virus-induced blockade of TRIM25-mediated ubiquitination. J Biol Chem. 2020;295(28):9691–9711. doi: 10.1074/jbc.RA120.013973
  • Yamada S, Shimojima M, Narita R, et al. RIG-I-Like receptor and toll-like receptor signaling pathways cause aberrant production of inflammatory cytokines/chemokines in a severe fever with thrombocytopenia syndrome virus infection mouse model. J Virol. 2018;92(13). doi: 10.1128/JVI.02246-17
  • Song P, Zheng N, Zhang L, et al. Downregulation of interferon-β and inhibition of TLR3 expression are associated with fatal outcome of severe fever with thrombocytopenia syndrome. Sci Rep. 2017;7(1):6532. doi: 10.1038/s41598-017-06921-6
  • Peng C, Wang H, Zhang W, et al. Decreased monocyte subsets and TLR4-mediated functions in patients with acute severe fever with thrombocytopenia syndrome (SFTS). Int J Infect Dis. 2016;43:37–42. doi: 10.1016/j.ijid.2015.12.009
  • Li S, Li H, Zhang YL, et al. SFTSV infection induces BAK/BAX-dependent mitochondrial DNA release to trigger NLRP3 inflammasome activation. Cell Rep. 2020;30(13):4370–4385.e7. doi: 10.1016/j.celrep.2020.02.105
  • Dalskov L, Gad HH, Hartmann R. Viral recognition and the antiviral interferon response. Embo J. 2023;42(14):e112907. doi: 10.15252/embj.2022112907
  • Mo Q, Xu Z, Deng F, et al. Host restriction of emerging high-pathogenic bunyaviruses via MOV10 by targeting viral nucleoprotein and blocking ribonucleoprotein assembly. PLOS Pathog. 2020;16(12):e1009129. doi: 10.1371/journal.ppat.1009129
  • Miura TA, Carlson JO, Beaty BJ, et al. Expression of human MxA protein in mosquito cells interferes with LaCrosse virus replication. J Virol. 2001;75(6):3001–3003. doi: 10.1128/JVI.75.6.3001-3003.2001
  • Kochs G, Janzen C, Hohenberg H, et al. Antivirally active MxA protein sequesters La Crosse virus nucleocapsid protein into perinuclear complexes. Proc Natl Acad Sci U S A. 2002;99(5):3153–3158. doi: 10.1073/pnas.052430399
  • Reichelt M, Stertz S, Krijnse-Locker J, et al. Missorting of LaCrosse virus nucleocapsid protein by the interferon-induced MxA GTPase involves smooth ER membranes. Traffic. 2004;5(10):772–784. doi: 10.1111/j.1600-0854.2004.00219.x
  • Andersson I, Bladh L, Mousavi-Jazi M, et al. Human MxA protein inhibits the replication of crimean-congo hemorrhagic fever virus. J Virol. 2004;78(8):4323–4329. doi: 10.1128/JVI.78.8.4323-4329.2004
  • Bridgen A, Dalrymple DA, Weber F, et al. Inhibition of dugbe nairovirus replication by human MxA protein. Virus Res. 2004;99(1):47–50. doi: 10.1016/j.virusres.2003.10.002
  • Habjan M, Penski N, Wagner V, et al. Efficient production of rift Valley fever virus-like particles: the antiviral protein MxA can inhibit primary transcription of bunyaviruses. Virology. 2009;385(2):400–408. doi: 10.1016/j.virol.2008.12.011
  • Chang M, Min YQ, Xu Z, et al. Host factor MxA restricts dabie bandavirus infection by targeting the viral NP protein to inhibit NP-RdRp interaction and ribonucleoprotein activity. J Virol. 2024;98(1):e0156823. doi: 10.1128/jvi.01568-23
  • Mudhasani R, Tran JP, Retterer C, et al. IFITM-2 and IFITM-3 but not IFITM-1 restrict rift Valley fever virus. J Virol. 2013;87(15):8451–8464. doi: 10.1128/JVI.03382-12
  • Xu-Yang Z, Pei-Yu B, Chuan-Tao Y, et al. Interferon-induced transmembrane protein 3 inhibits hantaan virus infection, and its single nucleotide polymorphism rs12252 influences the severity of hemorrhagic fever with renal syndrome. Front Immunol. 2016;7:535. doi: 10.3389/fimmu.2016.00535
  • Du S, Wang Y, Wang J, et al. IFITM3 inhibits severe fever with thrombocytopenia syndrome virus entry and interacts with viral gc protein. J Med Virol. 2024;96(3):e29491. doi: 10.1002/jmv.29491
  • Hevey MA, JA O, Jagger BW, et al. Heartland virus infection in a heart transplant recipient from the Heartland. Transplant Infectious Dis. 2019;21(4):e13098. doi: 10.1111/tid.13098
  • Zhang SF, Yang ZD, Huang ML, et al. Preexisting chronic conditions for fatal outcome among SFTS patients: an observational cohort study. PLOS Negl Trop Dis. 2019;13(5):e0007434. doi: 10.1371/journal.pntd.0007434
  • Wang M, Huang P, Liu W, et al. Risk factors of severe fever with thrombocytopenia syndrome combined with central neurological complications: a five-year retrospective case-control study. Front Microbiol. 2022;13:1033946. doi: 10.3389/fmicb.2022.1033946
  • Ge HH, Wang G, Guo PJ, et al. Coinfections in hospitalized patients with severe fever with thrombocytopenia syndrome: a retrospective study. J Med Virol. 2022;94(12):5933–5942. doi: 10.1002/jmv.28093
  • Zhang Y, Huang Y, Xu Y. Associated microbiota and treatment of severe fever with thrombocytopenia syndrome complicated with infections. J Med Virol. 2022;94(12):5916–5921. doi: 10.1002/jmv.28059
  • Sun J, Min YQ, Li Y, et al. Animal model of severe fever with thrombocytopenia syndrome virus infection. Front Microbiol. 2021;12:797189. doi: 10.3389/fmicb.2021.797189
  • Feng K, Zhang H, Jiang Z, et al. SFTS bunyavirus NSs protein sequestrates mTOR into inclusion bodies and deregulates mTOR-ULK1 signaling, provoking pro-viral autophagy. J Med Virol. 2023;95(1):e28371. doi: 10.1002/jmv.28371
  • Zhao J, Lu QB, Li H, et al. Sex differences in case fatality rate of patients with severe fever with thrombocytopenia syndrome. Front Microbiol. 2021;12:738808. doi: 10.3389/fmicb.2021.738808
  • Qu B, Qi X, Wu X, et al. Suppression of the interferon and NF-κB responses by severe fever with thrombocytopenia syndrome virus. J Virol. 2012;86(16):8388–8401. doi: 10.1128/JVI.00612-12
  • Wu X, Qi X, Qu B, et al. Evasion of antiviral immunity through sequestering of TBK1/IKKε/IRF3 into viral inclusion bodies. J Virol. 2014;88(6):3067–3076. doi: 10.1128/JVI.03510-13
  • Ning YJ, Wang M, Deng M, et al. Viral suppression of innate immunity via spatial isolation of TBK1/IKKε from mitochondrial antiviral platform. J Mol Cell Biol. 2014;6(4):324–337. doi: 10.1093/jmcb/mju015
  • Santiago FW, Covaleda LM, Sanchez-Aparicio MT, et al. Hijacking of RIG-I signaling proteins into virus-induced cytoplasmic structures correlates with the inhibition of type I interferon responses. J Virol. 2014;88(8):4572–4585. doi: 10.1128/JVI.03021-13
  • Ning YJ, Feng K, Min YQ, et al. Disruption of type I interferon signaling by the nonstructural protein of severe fever with thrombocytopenia syndrome virus via the hijacking of STAT2 and STAT1 into inclusion bodies. J Virol. 2015;89(8):4227–4236. doi: 10.1128/JVI.00154-15
  • Ning YJ, Mo Q, Feng K, et al. Interferon-γ-directed inhibition of a novel high-pathogenic phlebovirus and viral antagonism of the antiviral signaling by targeting STAT1. Front Immunol. 2019;10:1182. doi: 10.3389/fimmu.2019.01182
  • Choi Y, Park SJ, Sun Y, et al. Severe fever with thrombocytopenia syndrome phlebovirus non-structural protein activates TPL2 signalling pathway for viral immunopathogenesis. Nat Microbiol. 2019;4(3):429–437. doi: 10.1038/s41564-018-0329-x
  • Hong Y, Bai M, Qi X, et al. Suppression of the IFN-α and -β induction through sequestering IRF7 into viral inclusion bodies by nonstructural protein NSs in severe fever with thrombocytopenia syndrome bunyavirus infection. J Immunol. 2019;202(3):841–856. doi: 10.4049/jimmunol.1800576
  • Zhang L, Fu Y, Zhang R, et al. Nonstructural protein NSs hampers cellular antiviral response through LSm14A during severe fever with thrombocytopenia syndrome virus infection. J Immunol. 2021;207(2):590–601. doi: 10.4049/jimmunol.2100148
  • Ning YJ, Feng K, Min YQ, et al. Heartland virus NSs protein disrupts host defenses by blocking the TBK1 kinase–IRF3 transcription factor interaction and signaling required for interferon induction. J Biol Chem. 2017;292(40):16722–16733. doi: 10.1074/jbc.M117.805127
  • Rezelj L VV, Chaudhary P, Elliott V, et al. Differential antagonism of human innate immune responses by tick-borne phlebovirus nonstructural proteins. mSphere. 2017;2. doi: 10.1128/mSphere.00234-17
  • Moriyama M, Igarashi M, Koshiba T, et al. Two conserved amino acids within the NSs of severe fever with thrombocytopenia syndrome phlebovirus are essential for anti-interferon activity. J Virol. 2018;92(19): doi: 10.1128/JVI.00706-18
  • Feng K, Deng F, Hu Z, et al. Heartland virus antagonizes type I and III interferon antiviral signaling by inhibiting phosphorylation and nuclear translocation of STAT2 and STAT1. J Biol Chem. 2019;294(24):9503–9517. doi: 10.1074/jbc.RA118.006563
  • Liu S, Su Y, Lu Z, et al. The SFTSV nonstructural proteins induce autophagy to promote viral replication via interaction with Vimentin. J Virol. 2023;97(4):e0030223. doi: 10.1128/jvi.00302-23
  • Yan JM, Zhang WK, Yan LN, et al. Bunyavirus SFTSV exploits autophagic flux for viral assembly and egress. Autophagy. 2022;18(7):1599–1612. doi: 10.1080/15548627.2021.1994296
  • Hofmann H, Li X, Zhang X, et al. Severe fever with thrombocytopenia virus glycoproteins are targeted by neutralizing antibodies and can use DC-SIGN as a receptor for pH-dependent entry into human and animal cell lines. J Virol. 2013;87(8):4384–4394. doi: 10.1128/JVI.02628-12
  • Tani H, Shimojima M, Fukushi S, et al. Characterization of glycoprotein-mediated entry of severe fever with thrombocytopenia syndrome virus. J Virol. 2016;90(11):5292–5301. doi: 10.1128/JVI.00110-16
  • Sun Y, Qi Y, Liu C, et al. Nonmuscle myosin heavy chain IIA is a critical factor contributing to the efficiency of early infection of severe fever with thrombocytopenia syndrome virus. J Virol. 2014;88(1):237–248. doi: 10.1128/JVI.02141-13
  • Zhang L, Peng X, Wang Q, et al. CCR2 is a host entry receptor for severe fever with thrombocytopenia syndrome virus. Sci Adv. 2023;9(31):eadg6856. doi: 10.1126/sciadv.adg6856
  • Zhang LK, Wang B, Xin Q, et al. Quantitative proteomic analysis reveals unfolded-protein response involved in severe fever with thrombocytopenia syndrome virus infection. J Virol. 2019;93(10). doi: 10.1128/JVI.00308-19
  • Park SJ, Kim YI, Park A, et al. Ferret animal model of severe fever with thrombocytopenia syndrome phlebovirus for human lethal infection and pathogenesis. Nat Microbiol. 2019;4(3):438–446. doi: 10.1038/s41564-018-0317-1
  • Chen L, Chen T, Li R, et al. Recent advances in the study of the immune escape mechanism of SFTSV and its therapeutic agents. Viruses. 2023;15(4):940. doi: 10.3390/v15040940