696
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Genetic, virulence, and antimicrobial resistance characteristics associated with distinct morphotypes in ST11 carbapenem-resistant Klebsiella pneumoniae

, , , , , , , , & ORCID Icon show all
Article: 2349768 | Received 27 Nov 2023, Accepted 16 Apr 2024, Published online: 12 May 2024

References

  • Wang M, Earley M, Chen L, et al. Clinical outcomes and bacterial characteristics of carbapenem-resistant Klebsiella pneumoniae complex among patients from different global regions (CRACKLE-2): a prospective, multicentre, cohort study. Lancet Infect Dis. 2022;22(3):401–12. doi: 10.1016/S1473-3099(21)00399-6
  • Xu L, Sun X, Ma X. Systematic review and meta-analysis of mortality of patients infected with carbapenem-resistant Klebsiella pneumoniae. Ann Clin Microbiol Antimicrob. 2017;16(1):18. doi: 10.1186/s12941-017-0191-3
  • Li YT, Wang YC, Chen CM, et al. Distinct evolution of ST11 KL64 Klebsiella pneumoniae in Taiwan. Front Microbiol. 2023;14:1291540. doi: 10.3389/fmicb.2023.1291540
  • Zhou K, Xiao T, David S, et al. Novel subclone of carbapenem-resistant Klebsiella pneumoniae sequence type 11 with enhanced virulence and transmissibility, China. Emerg Infect Dis. 2020;26(2):289–297. doi: 10.3201/eid2602.190594
  • Gu D, Dong N, Zheng Z, et al. A fatal outbreak of ST11 carbapenem-resistant hypervirulent Klebsiella pneumoniae in a Chinese hospital: a molecular epidemiological study. Lancet Infect Dis. 2018;18(1):37–46. doi: 10.1016/S1473-3099(17)30489-9
  • Chen T, Wang Y, Zhou Y, et al. Recombination drives evolution of carbapenem-resistant Klebsiella pneumoniae sequence type 11 KL47 to KL64 in China. Microbiol Spectr. 2023;11(1):e0110722. doi: 10.1128/spectrum.01107-22
  • Zhao Y, Zhang X, Torres VVL, et al. An outbreak of carbapenem-resistant and hypervirulent Klebsiella pneumoniae in an intensive care unit of a Major Teaching Hospital in Wenzhou, China. Front Public Health. 2019;7:229. doi: 10.3389/fpubh.2019.00229
  • Wu Y, Wu C, Bao D, et al. Global evolution and geographic diversity of hypervirulent carbapenem-resistant Klebsiella pneumoniae. Lancet Infect Dis. 2022;22(6):761–762. doi: 10.1016/S1473-3099(22)00275-4
  • Xu Q, Yang X, Chan EWC, et al. The hypermucoviscosity of hypervirulent K. pneumoniae confers the ability to evade neutrophil-mediated phagocytosis. Virulence. 2021;12(1):2050–2059. doi: 10.1080/21505594.2021.1960101
  • Cheng HY, Chen YS, Wu CY, et al. RmpA regulation of capsular polysaccharide biosynthesis in Klebsiella pneumoniae CG43. J Bacteriol. 2010;192(12):3144–3158. doi: 10.1128/JB.00031-10
  • Takahashi M, Yoshida K, San Clemente CL. Relation of colonial morphologies in soft agar to morphological and biological properties of the K-9 strain of Klebsiella pneumoniae and its variants. Can J Microbiol. 1977;23(4):448–451. doi: 10.1139/m77-066
  • He J, Shi Q, Chen Z, et al. Opposite evolution of pathogenicity driven by in vivo wzc and wcaJ mutations in ST11-KL64 carbapenem-resistant Klebsiella pneumoniae. Drug Resist Updat. 2023;66:100891. doi: 10.1016/j.drup.2022.100891
  • Liu C, Dong N, Huang X, et al. Emergence of the clinical rdar morphotype carbapenem-resistant and hypervirulent Klebsiella pneumoniae with enhanced adaption to hospital environment. Sci Total Environ. 2023;889:164302. doi: 10.1016/j.scitotenv.2023.164302
  • CLSI. Performance Standard for Antimicrobial Susceptibility Testing; 32th ed. CLSI supplement M100. PA: Clinical and Laboratory Standards Institute; 2022.
  • Prjibelski A, Antipov D, Meleshko D, et al. Using SPAdes De Novo Assembler. Curr Protoc Bioinform. 2020;70(1):e102. doi: 10.1002/cpbi.102
  • Wick RR, Judd LM, Gorrie CL, et al. Unicycler: resolving bacterial genome assemblies from short and long sequencing reads. PLOS Comput Biol. 2017;13(6):e1005595. doi: 10.1371/journal.pcbi.1005595
  • Lam MMC, Wick RR, Watts SC, et al. A genomic surveillance framework and genotyping tool for Klebsiella pneumoniae and its related species complex. Nat Commun. 2021;12(1):4188. doi: 10.1038/s41467-021-24448-3
  • Jia B, Raphenya AR, Alcock B, et al. CARD 2017: expansion and model-centric curation of the comprehensive antibiotic resistance database. Nucleic Acids Res. 2017;45(D1):D566–D573. doi: 10.1093/nar/gkw1004
  • Chen L, Zheng D, Liu B, et al. VFDB 2016: hierarchical and refined dataset for big data analysis—10 years on. Nucleic Acids Res. 2016;44(D1):D694–7. doi: 10.1093/nar/gkv1239
  • Carattoli A, Zankari E, Garcia-Fernandez A, et al. In silico detection and typing of plasmids using PlasmidFinder and plasmid multilocus sequence typing. Antimicrob Agents Chemother. 2014;58(7):3895–3903. doi: 10.1128/AAC.02412-14
  • Marcais G, Delcher AL, Phillippy AM, et al. MUMmer4: a fast and versatile genome alignment system. PLOS Comput Biol. 2018;14(1):e1005944. doi: 10.1371/journal.pcbi.1005944
  • Huang TW, Lam I, Chang HY, et al. Capsule deletion via a λ-red knockout system perturbs biofilm formation and fimbriae expression in Klebsiella pneumoniae MGH 78578. BMC Res Notes. 2014;7(1):13. doi: 10.1186/1756-0500-7-13
  • Chen T, Dong G, Zhang S, et al. Effects of iron on the growth, biofilm formation and virulence of Klebsiella pneumoniae causing liver abscess. BMC Microbiol. 2020;20(1):36. doi: 10.1186/s12866-020-01727-5
  • Chen T, Xu Y, Xu W, et al. Hypertonic glucose inhibits growth and attenuates virulence factors of multidrug-resistant Pseudomonas aeruginosa. BMC Microbiol. 2020;20(1):203. doi: 10.1186/s12866-020-01889-2
  • Zhao D, Shi Q, Hu D, et al. The emergence of novel sequence type strains reveals an evolutionary process of intraspecies clone shifting in ICU-Spreading carbapenem-resistant Klebsiella pneumoniae. Front Microbiol. 2021;12:691406. doi: 10.3389/fmicb.2021.691406
  • Chen T, Xu H, Chen Y, et al. Identification and characterization of OXA-232-Producing sequence type 231 multidrug resistant Klebsiella pneumoniae strains causing bloodstream infections in China. Microbiol Spectr. 2023;11(2):e0260722. doi: 10.1128/spectrum.02607-22
  • Wang Y, Luo Q, Chen T, et al. Clinical, biological and genome-wide comparison of carbapenem-resistant Klebsiella pneumoniae with susceptibility transformation to polymyxin B during therapy. Clin Microbiol Infect. 2023;29(10):e1336.1–.e1336.8. doi: 10.1016/j.cmi.2023.06.029
  • Yang SK, Yusoff K, Mai CW, et al. Additivity vs synergism: investigation of the additive interaction of cinnamon bark oil and meropenem in combinatory therapy. Molecules. 2017;22(11):22. doi: 10.3390/molecules22111733
  • Wu T, Hu E, Xu S, et al. ClusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innovation (Camb). 2021;2(3):100141. doi: 10.1016/j.xinn.2021.100141
  • Khondker A, Dhaliwal AK, Saem S, et al. Membrane charge and lipid packing determine polymyxin-induced membrane damage. Commun Biol. 2019;2(1):67. doi: 10.1038/s42003-019-0297-6
  • Kuyyakanond T, Quesnel LB. The mechanism of action of chlorhexidine. FEMS Microbiol Lett. 1992;100(1–3):211–215. doi: 10.1111/j.1574-6968.1992.tb05705.x
  • Flores-Kim J, Darwin AJ. The phage shock protein response. Annu Rev Microbiol. 2016;70(1):83–101. doi: 10.1146/annurev-micro-102215-095359
  • Weiner L, Brissette JL, Model P. Stress-induced expression of the Escherichia coli phage shock protein operon is dependent on sigma 54 and modulated by positive and negative feedback mechanisms. Genes Dev. 1991;5(10):1912–1923. doi: 10.1101/gad.5.10.1912
  • Green RC, Darwin AJ. PspG, a new member of the Yersinia enterocolitica phage shock protein regulon. J Bacteriol. 2004;186(15):4910–4920. doi: 10.1128/JB.186.15.4910-4920.2004
  • Spiers AJ, Rainey PB. The Pseudomonas fluorescens SBW25 wrinkly spreader biofilm requires attachment factor, cellulose fibre and LPS interactions to maintain strength and integrity. Microbiol. 2005;151(9):2829–2839. doi: 10.1099/mic.0.27984-0
  • Ernst CM, Braxton JR, Rodriguez-Osorio CA, et al. Adaptive evolution of virulence and persistence in carbapenem-resistant Klebsiella pneumoniae. Nature Med. 2020;26(5):705–711. doi: 10.1038/s41591-020-0825-4
  • Lee H, Baek JY, Kim SY, et al. Comparison of virulence between matt and mucoid colonies of Klebsiella pneumoniae coproducing NDM-1 and OXA-232 isolated from a single patient. J Microbiol. 2018;56(9):665–672. doi: 10.1007/s12275-018-8130-3
  • Ye M, Liao C, Shang M, et al. Reduced virulence and enhanced host adaption during antibiotics therapy: a story of a within-host carbapenem-resistant Klebsiella pneumoniae sequence type 11 evolution in a patient with a serious scrotal abscess. mSystems. 2022;7(2):e0134221. doi: 10.1128/msystems.01342-21
  • Buffet A, Rocha EPC, Rendueles O. Nutrient conditions are primary drivers of bacterial capsule maintenance in Klebsiella. Proc Biol Sci. 2021;288(1946):20202876. doi: 10.1098/rspb.2020.2876
  • Key FM, Khadka VD, Romo-Gonzalez C, et al. On-person adaptive evolution of staphylococcus aureus during treatment for atopic dermatitis. Cell Host & Microbe. 2023;31(4):593–603.e7. doi: 10.1016/j.chom.2023.03.009
  • Feng J, Goss TJ, Bender RA, et al. Activation of transcription initiation from the nac promoter of Klebsiella aerogenes. J Bacteriol. 1995;177(19):5523–5534. doi: 10.1128/jb.177.19.5523-5534.1995
  • Ninfa AJ, Magasanik B. Covalent modification of the glnG product, NRI, by the glnL product, NRII, regulates the transcription of the glnALG operon in Escherichia coli. Proc Natl Acad Sci, USA. 1986;83(16):5909–5913. doi: 10.1073/pnas.83.16.5909
  • O’Toole R, Milton DL, Wolf-Watz H. Chemotactic motility is required for invasion of the host by the fish pathogen vibrio anguillarum. Mol Microbiol. 1996;19(3):625–637. doi: 10.1046/j.1365-2958.1996.412927.x
  • Totten PA, Lara JC, Lory S. The rpoN gene product of Pseudomonas aeruginosa is required for expression of diverse genes, including the flagellin gene. J Bacteriol. 1990;172(1):389–396. doi: 10.1128/jb.172.1.389-396.1990
  • Barchiesi J, Espariz M, Checa SK, et al. Downregulation of RpoN-controlled genes protects salmonella cells from killing by the cationic antimicrobial peptide polymyxin B. FEMS Microbiol Lett. 2009;291(1):73–79. doi: 10.1111/j.1574-6968.2008.01437.x
  • Wand ME, Bock LJ, Bonney LC, et al. Mechanisms of increased resistance to chlorhexidine and cross-resistance to Colistin following exposure of Klebsiella pneumoniae clinical isolates to chlorhexidine. Antimicrob Agents Chemother. 2017;61(1):61. doi: 10.1128/AAC.01162-16
  • Stein C, Vincze S, Kipp F, et al. Carbapenem-resistant Klebsiella pneumoniae with low chlorhexidine susceptibility. Lancet Infect Dis. 2019;19(9):932–933. doi: 10.1016/S1473-3099(19)30427-X