393
Views
0
CrossRef citations to date
0
Altmetric
Research article

Norepinephrine may promote the progression of Fusobacterium nucleatum related colorectal cancer via quorum sensing signalling

, , , , , , , , , , , & ORCID Icon show all
Article: 2350904 | Received 16 Oct 2023, Accepted 27 Apr 2024, Published online: 09 May 2024

References

  • Larroya-García A, Navas-Carrillo D, Orenes-Piñero E. Impact of gut microbiota on neurological diseases: diet composition and novel treatments. Crit Rev Food Sci Nutr. 2018;59(19):3102–11. doi: 10.1080/10408398.2018.1484340
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2019. Ca A Cancer J Clinicians. 2019;69(1):7–34. doi: 10.3322/caac.21551
  • Wu J, Li Q, Fu X. Fusobacterium nucleatum contributes to the carcinogenesis of colorectal cancer by inducing inflammation and suppressing Host immunity. Transl Oncol. 2019;12(6):846–851. doi: 10.1016/j.tranon.2019.03.003
  • Chen T, Li Q, Zhang X, et al. TOX expression decreases with progression of colorectal cancers and is associated with CD4 T-cell density and Fusobacterium nucleatum infection. Hum Pathol. 2018;79:93–101. doi: 10.1016/j.humpath.2018.05.008
  • Chen Y, Peng Y, Yu J, et al. Invasive Fusobacterium nucleatum activates beta-catenin signaling in colorectal cancer via a TLR4/P-PAK1 cascade. Oncotarget. 2017;8(19):31802–31814. doi: 10.18632/oncotarget.15992
  • Kostic A, Chun E, Robertson L, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–215. doi: 10.1016/j.chom.2013.07.007
  • Yang Y, Weng W, Peng J, et al. Fusobacterium nucleatum increases proliferation of colorectal cancer cells and tumor development in mice by activating toll-like receptor 4 signaling to nuclear Factor−κB, and up-regulating expression of MicroRNA-21. Gastroenterology. 2017;152(4):851–866.e24. doi: 10.1053/j.gastro.2016.11.018
  • Dadashi M, Hajikhani B, Faghihloo E, et al. Proliferative effect of FadA recombinant protein from Fusobacterium nucleatum on SW480 colorectal cancer cell line. Infect Disord Drug Targets. 2021;21(4):623–628. doi: 10.2174/1871526520666200720113004
  • Rubinstein MR, Wang X, Liu W, et al. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-cadherin/β-catenin signaling via its FadA adhesin. Cell Host Microbe. 2013;14(2):195–206. doi: 10.1016/j.chom.2013.07.012
  • Rubinstein MR, Baik JE, Lagana SM, et al. Fusobacterium nucleatum promotes colorectal cancer by inducing Wnt/β-catenin modulator annexin A1. EMBO Rep. 2019;20(4):e47638. doi: 10.15252/embr.201847638
  • Yu T, Guo F, Yu Y, et al. Fusobacterium nucleatum promotes chemoresistance to colorectal cancer by modulating autophagy. Cell. 2017;170(3):548–563.e16. doi: 10.1016/j.cell.2017.07.008
  • Bashir A, Miskeen AY, Bhat A, et al. Fusobacterium nucleatum: an emerging bug in colorectal tumorigenesis. Eur J Cancer Prev. 2015;24(5):373–385. doi: 10.1097/CEJ.0000000000000116
  • Thompson JA, Oliveira R, Djukovic A, et al. Manipulation of the Quorum Sensing Signal AI-2 affects the Antibiotic-Treated Gut Microbiota. Cell Rep. 2015;10(11):1861–1871. doi: 10.1016/j.celrep.2015.02.049
  • Fuqua WC, Winans SC, Greenberg EP. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol. 1994;176(2):269–275. doi: 10.1128/jb.176.2.269-275.1994
  • Rettner RE, Saier MH, Jr. The autoinducer-2 exporter superfamily. J Microb Physiol. 2010;18(4):195–205. doi: 10.1159/000316420
  • Wang Y, Wang Y, Sun L, et al. The LuxS/AI-2 system of streptococcus suis. Appl Microbiol Biotechnol. 2018;102(17):7231–7238. doi: 10.1007/s00253-018-9170-7
  • Li Q, Ren Y, Fu X. Inter-kingdom signaling between gut microbiota and their host. Cell Mol Life Sci. 2019;76(12):2383–2389. doi: 10.1007/s00018-019-03076-7
  • Jang Y, Choi Y-J, Lee S-H, et al. Autoinducer 2 of Fusobacterium nucleatum as a target molecule to inhibit biofilm formation of periodontopathogens. Arch Oral Biol. 2013;58(1):17–27. doi: 10.1016/j.archoralbio.2012.04.016
  • Wu J, Wang Y, Jiang Z. Fusobacterium nucleatumImmune induction identified by TMT proteomics analysis in autoinducer-2 treated macrophages. Expert Rev Proteomics. 2020;17(2):175–185. doi: 10.1080/14789450.2020.1738223
  • Li Q, Peng W, Wu J, et al. Autoinducer-2 of gut microbiota, a potential novel marker for human colorectal cancer, is associated with the activation of TNFSF9 signaling in macrophages. Oncoimmunology. 2019;8(10):e1626192. doi: 10.1080/2162402X.2019.1626192
  • Zeng X, Yue H, Zhang L, et al. Gut microbiota-derived autoinducer-2 regulates lung inflammation through the gut-lung axis. Int Immunopharmacol. 2023;124:110971. doi: 10.1016/j.intimp.2023.110971
  • Dicks LMT. How does quorum sensing of intestinal bacteria affect our health and mental status? Microorganisms. 2022;10(10):1969. doi: 10.3390/microorganisms10101969
  • Martin AM, Sun EW, Keating DJ. Mechanisms controlling hormone secretion in human gut and its relevance to metabolism. J Endocrinol. 2020;244(1):R1–R15. doi: 10.1530/JOE-19-0399
  • Rehfeld JF. Gastrointestinal hormones and their targets. Adv Exp Med Biol. 2014;817:157–175.
  • Asano Y, Hiramoto T, Nishino R, et al. Critical role of gut microbiota in the production of biologically active, free catecholamines in the gut lumen of mice. Am J Physiol Gastrointest Liver Physiol. 2012;303(11):G1288–G1295. doi: 10.1152/ajpgi.00341.2012
  • Moreira CG, Russell, R., Mishra, A.A., et al. Bacterial adrenergic sensors regulate virulence of enteric pathogens in the gut. MBio. 2016;7(3):e00826–16.
  • Boukerb AM, Cambronel M, Rodrigues S, et al. Inter-kingdom signaling of stress hormones: sensing, transport and modulation of bacterial physiology. Front Microbiol. 2021;12:690942. doi: 10.3389/fmicb.2021.690942
  • Mittal R, Debs LH, Patel AP, et al. Neurotransmitters: the Critical Modulators Regulating Gut–brain axis. J Cell Physiol. 2017;232(9):2359–2372. doi: 10.1002/jcp.25518
  • Roberts A, Matthews JB, Socransky SS, et al. Stress and the periodontal diseases: effects of catecholamines on the growth of periodontal bacteria in vitro. Oral Microbiol Immunol. 2002;17(5):296–303. doi: 10.1034/j.1399-302X.2002.170506.x
  • Kinney KS, Austin CE, Morton DS, et al. Norepinephrine as a growth stimulating factor in bacteria—mechanistic studies. Life Sci. 2000;67(25):3075–3085. doi: 10.1016/S0024-3205(00)00891-2
  • Lyte M, Frank CD, Green BT. Production of an autoinducer of growth by norepinephrine cultured Escherichia coli O157: H7. FEMS Microbiol Lett. 1996;139(2–3):155–159. doi: 10.1111/j.1574-6968.1996.tb08196.x
  • Raut N, Joel S, Pasini P, et al. Bacterial autoinducer-2 detection via an engineered quorum sensing protein. Anal Chem. 2015;87(5):2608. doi: 10.1021/ac504172f
  • Chen Y, Chen Y, Zhang J, et al. Fusobacterium nucleatum promotes metastasis in colorectal cancer by activating autophagy signaling via the Upregulation of CARD3 Expression. Theranostics. 2020;10(1):323–339. doi: 10.7150/thno.38870
  • Parhi L, Alon-Maimon T, Sol A, et al. Breast cancer colonization by Fusobacterium nucleatum accelerates tumor growth and metastatic progression. Nat Commun. 2020;11(1):3259. doi: 10.1038/s41467-020-16967-2
  • Schmittgen T, Livak K. Analyzing real-time PCR data by the comparative C(T) method. Nat Protoc. 2008;3(6):1101–1108. doi: 10.1038/nprot.2008.73
  • Yu YN, Yu T-C, Zhao H-J, et al. Berberine may rescue Fusobacterium nucleatum-induced colorectal tumorigenesis by modulating the tumor microenvironment. Oncotarget. 2015;6(31):32013–32026. doi: 10.18632/oncotarget.5166
  • Bassler BL, Greenberg EP, Stevens AM. Cross-species induction of luminescence in the quorum-sensing bacterium vibrio harveyi. J Bacteriol. 1997;179(12):4043–4045. doi: 10.1128/jb.179.12.4043-4045.1997
  • Stephens K, Pozo M, Tsao C-Y, et al. Bacterial co-culture with cell signaling translator and growth controller modules for autonomously regulated culture composition. Nat Commun. 2019;10(1):4129. doi: 10.1038/s41467-019-12027-6
  • Song J, Qin Q, Li T, et al. Impact of carbohydrates on autoinducer-2 secretion of Bifidobacterium longum subsp. longum BBMN68. Lett Appl Microbiol. 2018;66(4):340–346. doi: 10.1111/lam.12854
  • James D, Shao H, Lamont RJ, et al. The Actinobacillus actinomycetemcomitans ribose binding protein RbsB interacts with cognate and heterologous autoinducer 2 signals. Infect Immun. 2006;74(7):4021–4029. doi: 10.1128/IAI.01741-05
  • Liu J, Deng G-H, Zhang J, et al. The effect of chronic stress on anti-angiogenesis of sunitinib in colorectal cancer models. Psychoneuroendocrinology. 2015;52:130–142. doi: 10.1016/j.psyneuen.2014.11.008
  • Perego M, Tyurin VA, Tyurina YY, et al. Reactivation of dormant tumor cells by modified lipids derived from stress-activated neutrophils. Sci Transl Med. 2020;12(572):eabb5817. doi: 10.1126/scitranslmed.abb5817
  • Weir G, Ramage LE, Akyol M, et al. Substantial metabolic activity of human brown adipose tissue during warm conditions and cold-induced lipolysis of local triglycerides. Cell Metab. 2018;27(6):1348–1355.e4. doi: 10.1016/j.cmet.2018.04.020
  • Khan SR, Farrand SK. The BlcC (AttM) lactonase of agrobacterium tumefaciens does not quench the quorum-sensing system that regulates Ti plasmid conjugative transfer. J Bacteriol. 2009;191(4):1320–1329. doi: 10.1128/JB.01304-08
  • Kurnia D, Rachmawati P, Satari MH. Antibacterial of dibenzo-p-dioxi-2,8-dicarboxylic acid against pathogenic oral bacteria E. faecalis ATCC 29212 peptide pheromones: quorum sensing of in vitro and in silico study. Drug Des Devel Ther. 2020;14:3079–3086.
  • Laganenka L, Sander T, Lagonenko A, et al. Quorum sensing and metabolic state of the Host Control Lysogeny-Lysis switch of bacteriophage T1. MBio. 2019;10(5):e01884–19. doi: 10.1128/mBio.01884-19
  • Yang M, Meng F, Gu W, et al. Influence of polysaccharides from polygonatum kingianum on Short-Chain Fatty Acid Production and quorum sensing in lactobacillus faecis. Front Microbiol. 2021;12:758870. doi: 10.3389/fmicb.2021.758870
  • Wu Y, Wu J, Chen T, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis in mice via a toll-like receptor 4/p21-activated kinase 1 cascade. Dig Dis Sci. 2018;63(5):1210–1218. doi: 10.1007/s10620-018-4999-2
  • Abed J, Emgård JM, Zamir G, et al. Fap2 mediates Fusobacterium nucleatum colorectal adenocarcinoma enrichment by binding to tumor-expressed gal-GalNAc. Cell Host Microbe. 2016;20(2):215–225. doi: 10.1016/j.chom.2016.07.006
  • Gur C, Ibrahim Y, Isaacson B, et al. Binding of the Fap2 protein of Fusobacterium nucleatum to human inhibitory receptor TIGIT protects tumors from immune cell attack. Immunity. 2015;42(2):344–355. doi: 10.1016/j.immuni.2015.01.010
  • Nakagaki H, Sekine S, Terao Y, et al. Fusobacterium nucleatum envelope protein FomA is immunogenic and binds to the salivary statherin-derived peptide. Infect Immun. 2010;78(3):1185–1192. doi: 10.1128/IAI.01224-09
  • Bandapalli OR, Xu J, Liang F, et al. Effect of chronic psychological stress on liver metastasis of colon cancer in mice. PLOS ONE. 2015;10(10):e0139978. doi: 10.1371/journal.pone.0139978