343
Views
0
CrossRef citations to date
0
Altmetric
Research Article

GlmS plays a key role in the virulence factor expression and biofilm formation ability of Staphylococcus aureus promoted by advanced glycation end products

, , , , , , , , , ORCID Icon & ORCID Icon show all
Article: 2352476 | Received 21 Nov 2023, Accepted 03 May 2024, Published online: 13 May 2024

References

  • Archer NK, Mazaitis MJ, Costerton JW, et al. Staphylococcus aureus biofilms: properties, regulation, and roles in human disease. Virulence. 2011;2(5):445–12. doi: 10.4161/viru.2.5.17724
  • Arciola CR, Campoccia D, Speziale P, et al. Biofilm formation in Staphylococcus implant infections. A review of molecular mechanisms and implications for biofilm-resistant materials. Biomaterials. 2012;33(26):5967–5982. doi: 10.1016/j.biomaterials.2012.05.031
  • Xie X, Bao Y, Ni L, et al. Bacterial profile and antibiotic resistance in patients with diabetic foot ulcer in Guangzhou, Southern China: focus on the differences among different Wagner’s grades, IDSA/IWGDF grades, and ulcer types. Int J Endocrinol. 2017;2017:8694903. doi: 10.1155/2017/8694903
  • McCarthy H, Rudkin JK, Black NS, et al. Methicillin resistance and the biofilm phenotype in Staphylococcus aureus. Front Cell Infect Microbiol. 2015;5:1. doi: 10.3389/fcimb.2015.00001
  • Vlassara H, Uribarri J. Advanced glycation end products (AGE) and diabetes: cause, effect, or both? Curr Diab Rep. 2014;14(1):453. doi: 10.1007/s11892-013-0453-1
  • Stensen MH, Tanbo T, Storeng R, et al. Advanced glycation end products and their receptor contribute to ovarian ageing. Hum Reprod. 2014;29(1):125–134. doi: 10.1093/humrep/det419
  • Xie X, Yang C, Duan C, et al. Advanced glycation end products reduce macrophage-mediated killing of Staphylococcus aureus by ARL8 upregulation and inhibition of autolysosome formation. Eur J Immunol. 2020;50(8):1174–1186. doi: 10.1002/eji.201948477
  • Xie X, Liu X, Li Y, et al. Advanced glycation end products enhance biofilm formation by promoting extracellular DNA release through sigB upregulation in Staphylococcus aureus. Front Microbiol. 2020;11:1479. doi: 10.3389/fmicb.2020.01479
  • Baev N, Endre G, Petrovics G, et al. Six nodulation genes of nod box locus 4 in rhizobium meliloti are involved in nodulation signal production: nodM codes for D-glucosamine synthetase. Mol Gen Genet. 1991;228(1–2):113–124. doi: 10.1007/BF00282455
  • Ferré-D’Amaré AR. The glmS ribozyme: use of a small molecule coenzyme by a gene-regulatory RNA. Quart Rev Biophys [internet]. 2010 [cited 2022 Dec 27];43(4):423–447. Available from: https://www.cambridge.org/core/product/identifier/S0033583510000144/type/journal_article
  • Deigan KE, Ferré-D’Amaré F-D. Riboswitches: discovery of drugs that target bacterial gene-regulatory RNAs. Acc Chem Res. 2011;44(12):1329–1338. doi: 10.1021/ar200039b
  • Komatsuzawa H, Fujiwara T, Nishi H, et al. The gate controlling cell wall synthesis in Staphylococcus aureus. Mol Microbiol. 2004;53(4):1221–1231. doi: 10.1111/j.1365-2958.2004.04200.x
  • Stängle D, Silkenath B, Gehle P, et al. Carba-sugar analogs of glucosamine-6-phosphate: new activators for the glmS riboswitch. Chemistry A European J. 2023;29(3):e202202378. doi: 10.1002/chem.202202378
  • Li Z, Zhang Y, Sui S, et al. Targeting HMGB3/hTERT axis for radioresistance in cervical cancer. J Exp Clin Cancer Res [internet]. 2020 [cited 2023 Apr 21];39(1):1–17.
  • Kido K, Yamanaka S, Nakano S, et al. AirID, a novel proximity biotinylation enzyme, for analysis of protein-protein interactions. Elife. 2020;9:e54983. doi: 10.7554/eLife.54983
  • Perez-Riverol Y, Bai J, Bandla C, et al. The PRIDE database resources in 2022: a hub for mass spectrometry-based proteomics evidences. Nucleic Acids Res. 2022;50(D1):D543–D552. doi: 10.1093/nar/gkab1038
  • Tanhaeian A, Azghandi M, Mousavi Z, et al. Expression of thanatin in HEK293 Cells and investigation of its antibacterial effects on some human pathogens. Protein Pept Lett. 2020;27(1):41–47. doi: 10.2174/0929866526666190822162140
  • Zeng L, Wang Y-L, Wang F, et al. Construction of the POT1 promoter report gene vector, and the effect and underlying mechanism of the POT1 promoter in regulating telomerase and telomere length. Oncol Lett. 2017;14:7232–7240. doi: 10.3892/ol.2017.7127
  • Young TL, Whisenhunt KN, LaMartina SM, et al. Sonic hedgehog intron variant associated with an unusual pediatric cortical cataract. Invest Ophthalmol Vis Sci [internet]. 2022 [cited 2023 May 11];63(6):25. Available from: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9234370/
  • Zhang J, Zhao L, Li Y, et al. Circadian clock regulates granulosa cell autophagy through NR1D1-mediated inhibition of ATG5. American Journal of Physiology-Cell Physiology [internet]. 2022 [cited 2023 Jun 1];322(2):C231–C245.
  • Baba T, Bae T, Schneewind O, et al. Genome sequence of Staphylococcus aureus strain Newman and comparative analysis of staphylococcal genomes: polymorphism and evolution of two major pathogenicity islands. J Bacteriol. 2008;190(1):300–310. doi: 10.1128/JB.01000-07
  • Bae T, Schneewind O. Allelic replacement in Staphylococcus aureus with inducible counter-selection. Plasmid [Internet]. 2006 [cited 2023 Oct 21];55(1):58–63. doi:10.1016/j.plasmid.2005.05.005
  • Zhang L, Zou W, Ni M, et al. Development and application of two inducible expression systems for Streptococcus suis. Microbiol Spectr [Internet]. 2022 [cited 2023 Sep 27];10(4):e00363–22.
  • Imran M, Liu T, Wang Z, et al. Evolutionary conservation of nested MIR159 structural microRNA genes and their promoter characterization in Arabidopsis thaliana. Frontiers in plant science [Internet]. 2022 [cited 2023 May 15];13. Available from 10.3389/fpls.2022.948751
  • Jiang L, Yi T, Shen Z, et al. Aloe-emodin attenuates Staphylococcus aureus pathogenicity by interfering with the oligomerization of α-toxin. Front Cell Infect Microbiol. 2019;9:157. doi: 10.3389/fcimb.2019.00157
  • Liang H, He K, Li T, et al. Mechanism and antibacterial activity of vine tea extract and dihydromyricetin against Staphylococcus aureus. Sci Rep. 2020;10(1):21416. doi: 10.1038/s41598-020-78379-y
  • Zheng X, Chen L, Zeng W, et al. Antibacterial and anti-biofilm efficacy of Chinese Dragon’s blood against Staphylococcus aureus isolated from infected wounds Isolated From Infected Wounds. Frontiers in Microbiology [Internet] Front Microbiol. 2021 [cited 2023 Aug 2];12.
  • Grossman AB, Burgin DJ, Rice KC. Quantification of Staphylococcus aureus biofilm formation by crystal violet and confocal microscopy [Internet]. In: Rice K, editor. Staphylococcus aureus: methods and protocols. New York (NY): Springer US; 2021 [cited 2023 Aug 3]. p. 69–78.
  • Liu H, Shang W, Hu Z, et al. A novel SigB(Q225P) mutation in Staphylococcus aureus retains virulence but promotes biofilm formation. Emerg Microbes Infect [Internet] 2018 [cited 2023 Jun 2];7:1–12.
  • Qi M, Liu Q, Liu Y, et al. Staphylococcus aureus biofilm inhibition by high voltage prick electrostatic field (HVPEF) and the mechanism investigation. International Journal of Food Microbiology [internet]. 2022 [cited 2023 Aug 4];362:109499. Available from: https://www.sciencedirect.com/science/article/pii/S016816052100458X
  • Wu S, Qin B, Deng S, et al. CodY is modulated by YycF and affects biofilm formation in Staphylococcus aureus. Front Microbiol [Internet]. 2022 [cited 2023 Jun 16];13:967567. 10.3389/fmicb.2022.967567
  • Cui J, Zhang H, Mo Z, et al. Cell wall thickness and the molecular mechanism of heterogeneous vancomycin-intermediate Staphylococcus aureus. Lett Appl Microbiol. 2021;72(5):604–609. doi: 10.1111/lam.13456
  • Wang Y, Lau PC. Sequence and expression of an isocitrate dehydrogenase-encoding gene from a polycyclic aromatic hydrocarbon oxidizer, sphingomonas yanoikuyae B1. Gene. 1996;168:15–21. doi: 10.1016/0378-1119(95)00732-6
  • Traykovska M, Popova KB, Penchovsky R. Targeting glmS ribozyme with chimeric antisense oligonucleotides for antibacterial drug development. ACS synth biol [Internet]. 2021 [cited 2023 Feb 15];10(11):3167–3176.
  • Lünse CE, Schmidt MS, Wittmann V, et al. Carba-sugars activate the glmS-riboswitch of Staphylococcus aureus. ACS Chem Biol. 2011;6(7):675–678. doi: 10.1021/cb200016d
  • Klein DJ, AR F-D. Structural basis of glmS ribozyme activation by glucosamine-6-phosphate. Science. 2006;313(5794):1752–1756. doi: 10.1126/science.1129666
  • Chen Q, Wang H, Li Z, et al. Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol [internet]. 2022 [cited 2023 May 30];76(1):135–147. 10.1016/j.jhep.2021.08.027
  • Twarda-Clapa A, Olczak A, Białkowska AM, et al. Advanced glycation end-products (AGEs): formation, chemistry, classification, receptors, and diseases related to AGEs. Cells. 2022;11(8):1312. doi: 10.3390/cells11081312
  • Takeuchi M, Sakasai-Sakai A, Takata T, et al. Effects of Toxic AGEs (TAGE) on human health. Cells. 2022;11(14):2178. doi: 10.3390/cells11142178
  • Sellegounder D, Zafari P, Rajabinejad M, et al. Advanced glycation end products (AGEs) and its receptor, RAGE, modulate age-dependent COVID-19 morbidity and mortality. A review and hypothesis. Int Immunopharmacol. 2021;98:107806. doi: 10.1016/j.intimp.2021.107806
  • Tran HT, Bonilla CY. SigB-regulated antioxidant functions in gram‐positive bacteria. World J Microbiol Biotechnol [Internet]. 2021 [cited 2023 Aug 15];37(3):38. Available from 10.1007/s11274-021-03004-7
  • McCown PJ, Roth A, Breaker RR. An expanded collection and refined consensus model of glmS ribozymes. RNA. 2011;17(4):728–736. doi: 10.1261/rna.2590811
  • Liu C-I, Liu GY, Song Y, et al. A cholesterol biosynthesis inhibitor blocks Staphylococcus aureus virulence. Science. 2008;319(5868):1391–1394. doi: 10.1126/science.1153018