48
Views
0
CrossRef citations to date
0
Altmetric
Research Letter

An investigation of the relationship between surface temperature and total ozone over New Delhi, India, using a frequency domain technique and binary fuzzy relation

ORCID Icon & ORCID Icon
Pages 548-557 | Received 03 Mar 2024, Accepted 13 Apr 2024, Published online: 28 Apr 2024

References

  • Bowdalo, D. R., M. J. Evans, and E. D. Sofen. 2016. “Spectral Analysis of Atmospheric Composition: Application to Surface Ozone Model–Measurement Comparisons.” Atmospheric Chemistry & Physics 16 (13): 8295–8308. https://doi.org/10.5194/acp-16-8295-2016.
  • Brunamonti, S., T. Jorge, P. Oelsner, S. Hanumanthu, B. B. Singh, K. R. Kumar, S. Sonbawne, et al. 2018. “Balloon-Borne Measurements of Temperature, Water Vapor, Ozone and Aerosol Backscatter on the Southern Slopes of the Himalayas During StratoClim 2016–2017.” Atmospheric Chemistry & Physics 18 (21): 15937–15957. https://doi.org/10.5194/acp-18-15937-2018.
  • Chakraborthy, P., and S. Chattopadhyay. 2013. “A Statistical Probe into Variability within Total Ozone Time Series Over Arosa, Switzerland (9.68° E, 46.78° N).” Indian Journal of Physics 87:89–97. https://doi.org/10.1007/s12648-012-0211-2.
  • Chakraborty, S., and S. Chattopadhyay. 2021. “A Time-Domain Approach to the Total Ozone Time Series and a Test of Its Predictability within a Univariate Framework.” Remote Sensing Letters 12 (1): 20–29. https://doi.org/10.1080/2150704X.2020.1871092.
  • Chandra, S., and C. A. Varotsos. 1995. “Recent Trends of the Total Column Ozone: Implications for the Mediterranean Region.” International Journal of Remote Sensing 16 (10): 1765–1769. https://doi.org/10.1080/01431169508954516.
  • Chandra, S., C. Varotsos, and L. E. Flynn. 1996. “The Mid-Latitude Total Ozone Trends in the Northern Hemisphere.” Geophysical Research Letters 23 (5): 555–558. https://doi.org/10.1029/96GL00305.
  • Chattopadhyay, G., and S. Chattopadhyay. 2020. “Spectral Analysis Approach to Study the Association Between Total Ozone Concentration and Surface Temperature.” International Journal of Environmental Science and Technology 17 (10): 4353–4358. https://doi.org/10.1007/s13762-020-02763-4.
  • Chellali, F., A. Khellaf, and A. Belouchrani. 2010. “Wavelet Spectral Analysis of the Temperature and Wind Speed Data at Adrar, Algeria.” Renew Energy 35 (6): 1214–1219. https://doi.org/10.1016/j.renene.2009.10.010.
  • Joshi, M. K., Pandey, and AC. 2011. “Trend and Spectral Analysis of Rainfall Over India During 1901–2000.” Journal of Geophysical Research: Atmospheres 116 (D6): D06104. https://doi.org/10.1029/2010JD014966.
  • Kondratyev, K. Y., O. M. Pokrovsky, and C. A. Varotsos. 1995. “Atmospheric Ozone Trends and Other Factors of Surface Ultraviolet Radiation Variability.” Environmental conservation 22 (3): 259–261. https://doi.org/10.1017/S0376892900010663.
  • Kondratyev, K. Y., C. A. Varotsos, and A. P. Cracknell. 1994. “Total Ozone Amount Trend at St Petersburg As Deduced from Nimbus-7 TOMS Observations.” International Journal of Remote Sensing 15 (13): 2669–2677. https://doi.org/10.1080/01431169408954274.
  • Midya, S. K., D. Ghosh, S. C. Ganda, and H. Sarkar. 2011. “Seasonal Variation of Daily Total Column Ozone (TCO) and Role of Its Depletion and Formation Rate on Surface Temperature Over Dumdum at Kolkata, India.” Indian Journal of Physics 85 (8): 1247. https://doi.org/10.1007/s12648-011-0150-3.
  • Midya, S. K., and U. Saha. 2011. “Role of the Rate of Change of Total Column Ozone During Different Seasons on the Prediction of Indian Summer Monsoon Rainfall Over Gangetic West Bengal, India.” Indian Journal of Physics 85 (10): 1461–1468. https://doi.org/10.1007/s12648-011-0165-9.
  • Nussbaumer, C. M., and R. C. Cohen. 2020. “The Role of Temperature and NO X in Ozone Trends in the Los Angeles Basin.” Environmental Science & Technology 54 (24): 15652–15659. https://doi.org/10.1021/acs.est.0c04910.
  • Oh, J., S. W. Son, K. Williams, D. Walters, J. Kim, M. Willett, P. Earnshaw, A. Bushell, Y. Kim, and J. Kim. 2018. “Ozone Sensitivity of Tropical Upper-Troposphere and Stratosphere Temperature in the MetOffice Unified Model.” Quarterly Journal of the Royal Meteorological Society 144 (715): 2001–2009. https://doi.org/10.1002/qj.3346.
  • Panofsky, H. A. 1955. “Meteorological Applications of Power-Spectrum Analysis.” Bull Am Meteorol Soc 36 (4): 163–166. https://doi.org/10.1175/1520-0477-36.4.163.
  • Sebald, L., R. Treffeisen, E. Reimer, and T. Hies. 2000. “Spectral Analysis of Air Pollutants. Part 2: Ozone Time Series.” Atmospheric Environment 34 (21): 3503–3509. https://doi.org/10.1016/S1352-2310(00)00147-3.
  • Serov, V. 2017. Fourier Series, Fourier Transform and Their Applications to Mathematical Physics. Vol. 197. New York: Springer.
  • Shangguan, M., W. Wang, and S. Jin. 2019. “Variability of Temperature and Ozone in the Upper Troposphere and Lower Stratosphere from Multisatellite Observations and Reanalysis Data.” Atmospheric Chemistry & Physics 19 (10): 6659–6679. https://doi.org/10.5194/acp-19-6659-2019.
  • Steinbrecht, W., H. B, C. Brühl, M. Dameris, M. A. Giorgetta, V. Grewe, E. Manzini, et al. 2006. “Interannual Variation Patterns of Total Ozone and Lower Stratospheric Temperature in Observations and Model Simulations.” Atmospheric Chemistry & Physics 6 (2): 349–374. https://doi.org/10.5194/acp-6-349-2006.
  • Steinbrecht, W., B. Hassler, H. Claude, P. Winkler, and R. S. Stolarski. 2003. “Global Distribution of Total Ozone and Lower Stratospheric Temperature Variations.” Atmospheric Chemistry & Physics 3 (5): 1421–1438. https://doi.org/10.5194/acp-3-1421-2003.
  • Varotsos, C., and C. Cartalis. 1991. “Re-Evaluation of Surface Ozone Over Athens, Greece, for the Period 1901–1940.” Atmospheric Research 26 (4): 303–310. https://doi.org/10.1016/0169-8095(91)90024-Q.
  • Varotsos, C. A., A. P. Cracknell, and C. Tzanis. 2012. “The Exceptional Ozone Depletion Over the Arctic in January–March 2011.” Remote Sensing Letters 3 (4): 343–352. https://doi.org/10.1080/01431161.2011.597792.
  • Varotsos, C., M. Efstathiou, and C. Tzanis. 2009. “Scaling Behaviour of the Global Tropopause.” Atmospheric Chemistry & Physics 9 (2): 677–683. https://doi.org/10.5194/acp-9-677-2009.
  • Wilks, D. S. 2006. Statistical Methods in the Atmospheric Sciences. ISBN 0127519661, 9780127519661. Oxford, UK: Academic Press.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.