2,519
Views
1
CrossRef citations to date
0
Altmetric
Perspective

Integrative biological simulation praxis: Considerations from physics, philosophy, and data/model curation practices

ORCID Icon & ORCID Icon
Article: e1392400 | Received 11 Sep 2017, Accepted 10 Oct 2017, Published online: 29 Nov 2017

References

  • Hartl DL, Clark AG. Principles of population genetics. Sunderland (MA): Sinauer; 1997.
  • Doi M, Edwards SF. The theory of polymer dynamics. Oxford, UK: Claredon Press; 1986.
  • Dayan P, Abbott LF. Theoretical neuroscience: computational and mathematical modeling of neural systems. Cambridge: MIT Press; 2001.
  • Karr JR, Sanghvi JC, Macklin DN, Gutschow MV, Jacobs JM, Bolival B, Assad-Garcia N, Glass JI, Covert MW. A whole-cell computational model predicts phenotype from genotype. Cell. 2012;150:389–401. doi:10.1016/j.cell.2012.05.044. PMID:22817898.
  • Karr JR, Takahashi K, Funahashi A. The principles of whole-cell modeling. Curr Opin Microbiol. 2015; 27:18–24. doi:10.1016/j.mib.2015.06.004. PMID:26115539.
  • Szigeti B, Gleeson P, Vella M, Hokason J, Currie M, Khayrulin S, Palyanov A, Cantarelli M, Idilli G, Larson SD. OpenWorm: an open-science approach to modeling Caenorhabditis elegans. Front Comput Neurosci. 2014;8:137. PMID:4217485.
  • Vella M, Palyanov A, Gleeson P. Integration of predictive-corrective incompressible SPH and Hodgkin-Huxley based models in the OpenWorm in silico model of C. elegans. BMC Neurosci. 2013;14(Suppl 1):P209.
  • Markram H, Muller E, Ramaswamy S, Reimann MW, Abdellah M, Sanchez CA, Ailamaki A, Alonso-Nanclares L, Antille N, Arsever S, et al. Reconstruction and Simulation of Neocortical Microcircuitry. Cell. 2015;163:456–92. doi:10.1016/j.cell.2015.09.029. PMID:26451489.
  • Givon LE, Lazar AA. Neurokernel: An open source platform for emulating the fruit fly brain. Plos One. 2016;11:e0146581. doi:10.1371/journal.pone.0146581. PMID:26751378.
  • Noble D. Modeling the heart–from genes to cells to the whole organ. Science. 2002;295:1678–82. doi:10.1126/science.1069881. PMID:11872832.
  • McCulloch AD. Systems biophysics: multiscale biophysical modeling of organ systems. Biophys J. 2016;110:1023–7. doi:10.1016/j.bpj.2016.02.007. PMID:26958877.
  • Gor V, Shapiro B, Jönsson H, Heisler M, Reddy G, Meyerowitz E, Mjolsness E. A software architecture for developmental modeling in plants: The computable plant project. Springer; 2006. pages 345–54.
  • Resasco DC, Gao F, Morgan F, Novak IL, Schaff JC, Slepchenko BM. Virtual Cell: computational tools for modeling in cell biology. Wiley Interdisciplinary Reviews: Systems Biology and Medicine. 2012;4:129–40. PMID:22139996.
  • Kupferschmidt K. Virtual rat brain fails to impress its critics. Science. 2015;350:263–4. doi:10.1126/science.350.6258.263. PMID:26472886.
  • Gunawardena J. Silicon dreams of cells into symbols. Nat Biotechnol. 2012;30:838–40. doi:10.1038/nbt.2358. PMID:22965055.
  • Gunawardena J. Biology is more theoretical than physics. Mol Biol Cell. 2013;24:1827–9. doi:10.1091/mbc.E12-03-0227. PMID:23765269.
  • Staff. The Higgs boson. Science. 2012;338:1558–9. doi:10.1126/science.338.6114.1558. PMID:23258885.
  • Cho A. Breakthrough of the year. The discovery of the Higgs boson. Science. 2012;338:1524–5. doi:10.1126/science.338.6114.1524. PMID:23258864.
  • Cho A. The long road to LIGO. Science. 2016;534–535.
  • Campanelli M, Lousto CO, Marronetti P, Zlochower Y. Accurate evolutions of orbiting black-hole binaries without excision. Phys Rev Lett. 2006;96:111101. doi:10.1103/PhysRevLett.96.111101. PMID:16605808.
  • Blanchet L, Detweiler S, Le Tiec A, Whiting BF. Post-Newtonian and numerical calculations of the gravitational self-force for circular orbits in the Schwarzschild geometry. Phys Rev D. 2010;81:064004. doi:10.1103/PhysRevD.81.064004.
  • Belczynski K, Holz DE, Bulik T, O'Shaughnessy R. The first gravitational-wave source from the isolated evolution of two stars in the 40–100 solar mass range. Nature. 2016;534:512–5. doi:10.1038/nature18322. PMID:27337338.
  • Kane GL, Kumar P, Shao J. Unravelling strings at the CERN LHC. Phys Rev D. 2008;77:116005. doi:10.1103/PhysRevD.77.116005.
  • Hauptman J. Particle physics experiments at high energy colliders. Darmstadt: John Wiley & Sons; 2011.
  • Cohen-Tannoudji C, Dupont-Roc J, Grynberg G. Atom-photon interactions. New York: Wiley-VCH; 1998.
  • Wiseman HM, Milburn GJ. Quantum measurement and control. Cambridge, UK: Cambridge University Press. 2010.
  • Hebra A. The physics of metrology: all about instruments: from trundle wheels to atomic clocks. New York: Springer; 2010.
  • Hinkley N, Sherman JA, Phillips NB, Schioppo M, Lemke ND, Beloy K, Pizzocaro M, Oates CW, Ludlow AD. An atomic clock with 10–18 instability. Science. 2013;341:1215–8. doi:10.1126/science.1240420. PMID:23970562.
  • Adami C, Ofria C, Collier TC. Evolution of biological complexity. Proc Natl Acad Sci USA. 2000;97:4463–8. doi:10.1073/pnas.97.9.4463. PMID:10781045.
  • Adami C. What is complexity? BioEssays. 2002;24:1085–94. doi:10.1002/bies.10192. PMID:12447974.
  • Koorehdavoudi H, Bogdan P. A statistical physics characterization of the complex systems dynamics: quantifying complexity from spatio-temporal interactions. Nat Sci Rep. 2016;6:27602. doi:10.1038/srep27602.
  • Wall ME. Quantitative biology: from molecular to cellular systems. Boca Raton, FL: CRC Press; 2012.
  • Gunawardena J. Some lessons about models from Michaelis and Menten. Mol Biol Cell. 2012;23:517–9. doi:10.1091/mbc.E11-07-0643. PMID:22337858.
  • Goldenfeld N, Kadanoff LP. Simple lessons from complexity. Science. 1999;284:87–9. doi:10.1126/science.284.5411.87. PMID:10102823.
  • Yates FA. The art of memory. London: Random House; 1992.
  • Rossi P. Logic and the art of memory. In: Stephen Clucas. Trans. Chicago: U of Chicago P; 2000.
  • Sarma GP. Reductionism and the Universal Calculus. arXiv preprint arXiv:160706725 2016.
  • Wigner EP. The unreasonable effectiveness of mathematics in the natural sciences. Richard courant lecture in mathematical sciences delivered at New York University, May 11, 1959. Comm Pure Appl Math. 1960;13:1–14. doi:10.1002/cpa.3160130102.
  • Halevy A, Norvig P, Pereira F. The Unreasonable Effectiveness of Data. IEEE Intell Syst. 2009;24:8–12. doi:10.1109/MIS.2009.36.
  • Mirschel S, Steinmetz K, Rempel M, Ginkel M, Gilles ED. ProMoT: modular modeling for systems biology. Bioinformatics. 2009;25:687–9. doi:10.1093/bioinformatics/btp029. PMID:19147665.
  • Mallavarapu A, Thomson M, Ullian B, Gunawardena J. Programming with models: modularity and abstraction provide powerful capabilities for systems biology. J R Soc Interface. 2009;6:257–70. doi:10.1098/rsif.2008.0205. PMID:18647734.
  • Hlavacek WS, Faeder JR, Blinov ML, Posner RG, Hucka M, Fontana W. Rules for modeling signal-transduction systems. Sci STKE. 2006;2006:re6–re6. PMID:16849649.
  • Hayden EC. Geneticists push for global data-sharing: international organization aims to promote exchange and linking of DNA sequences and clinical information. Nature. 2013;498:16–8. doi:10.1038/498017a. PMID:23739403.
  • Hayden EC. Open-data project aims to ease the way for genomic research. Nature. 2012.
  • Perkel J. Democratic databases: science on GitHub. Nature. 2016;538:127–8. doi:10.1038/538127a. PMID:27708327.
  • Nielsen M. Reinventing discovery: The new era of networked science. Princeton, NJ: Princeton University Press; 2012.
  • Priem J. Scholarship: Beyond the paper. Nature. 2013;495:437–40. doi:10.1038/495437a. PMID:23538811.
  • Bard JBL, Rhee SY. Ontologies in biology: design, applications and future challenges. Nat Rev Genet. 2004;5:213–22. doi:10.1038/nrg1295. PMID:14970823.
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene Ontology: tool for the unification of biology. Nat Genet. 2000;25:25–9. doi:10.1038/75556. PMID:10802651.
  • RINL Resource Identification Initiative, Bandrowski A, Brush M, Grethe JS, Haendel MA, Kennedy DN, Hill S, Hof PR, Martone ME, Pols M, et al. The Resource identification initiative: A cultural shift in publishing. Neuroinformatics. 2015;14:169–82. doi:10.1007/s12021-015-9284-3.
  • Hirschman L, Burns GAPC, Krallinger M, Arighi C, Cohen KB, Valencia A, Wu CH, Chatr-aryamontri A, Dowell KG, Huala E, et al. Text mining for the biocuration workflow. Database. 2012;2012:bas020–0. doi:10.1093/database/bas020. PMID:22513129.
  • Wei CH, Kao HY, Lu Z. PubTator: a web-based text mining tool for assisting biocuration. Nucleid Acids Res. 2013;41:W518–22. doi:10.1093/nar/gkt441.
  • Bateman A. Curators of the world unite: the International Society of Biocuration. Bioinformatics. 2010;26:991–1. doi:10.1093/bioinformatics/btq101. PMID:20305270.
  • Burge S, Attwood TK, Bateman A, Berardini TZ, Cherry M, O'Donovan C, Xenarios L, Gaudet P. Biocurators and biocuration: surveying the 21st century challenges. Database. 2012;2012:bar059–9. doi:10.1093/database/bar059. PMID:22434828.
  • Khatib F, DiMaio F, Group FC, Group FVC, Cooper S, Kazmierczyk M, Gilski M, Krzywda S, Zabranska H, Pichova I, et al. Crystal structure of a monomeric retroviral protease solved by protein folding game players. Nat Struct Mol Biol. 2011;18:1175–7. doi:10.1038/nsmb.2119. PMID:21926992.
  • Horowitz S, Koepnick B, Martin R, Tymieniecki A, Winburn AA, Cooper S, Flatten J, Rogawski DS, Koropatkin NM, Hailu TT, et al. Determining crystal structures through crowdsourcing and coursework. Nat Commun. 2016;7:12549. doi:10.1038/ncomms12549. PMID:27633552.
  • Cooper S, Khatib F, Treuille A, Barbero J, Lee J, Beenen M, Leaver-Fay A, Baker D, Popović Z, Players F. Predicting protein structures with a multiplayer online game. Nature. 2010;466:756–60. doi:10.1038/nature09304. PMID:20686574.
  • Sarma GP, Jacobs TW, Watts MD, Ghayoomie SV, Larson SD, Gerkin RC. Unit testing, model validation, and biological simulation. F1000Res. 2016;5:1946–16. doi:10.12688/f1000research.9315.1. PMID:27635225.
  • Chen T, Zhao J, Ma J, Zhu Y. Web Resources for Mass Spectrometry-based Proteomics. Genomics Proteomics Bioinformatics. 2015;13:36–9. doi:10.1016/j.gpb.2015.01.004. PMID:25721607.
  • Covert MW, Xiao N, Chen TJ, Karr JR. Integrating metabolic, transcriptional regulatory and signal transduction models in Escherichia coli. Bioinformatics. 2008;24:2044–50. doi:10.1093/bioinformatics/btn352. PMID:18621757.
  • De Schutter E. The dangers of plug-and-play simulation using shared models. Neuroinformatics. 2014;12:227–8. PMID:24664409.
  • Gerkin RC, Omar C. NeuroUnit: Validation tests for neuroscience models. Front Neuroinform. 2013.
  • Omar C, Aldrich J, Gerkin RC. Collaborative infrastructure for test-driven scientific model validation. Proceeding ICSE Companion 2014 Companion Proceedings of the 36th International Conference on Software Engineering. Front Bioeng Biotechnol. 2014.
  • Hucka M, Nickerson DP, Bader GD, Bergmann FT, Cooper J, Demir E, Garny A, Golebiewski M, Myers CJ, Schreiber F, et al. Promoting coordinated development of community-based information standards for modeling in biology: The COMBINE Initiative. Front Bioeng Biotechnol. 2015;3:D504. doi:10.3389/fbioe.2015.00019.
  • Medley JK, Goldberg AP, Karr JR. Guidelines for Reproducibly Building and Simulating Systems Biology Models. IEEE Trans Biomed Eng. 2016;63:2015–20. doi:10.1109/TBME.2016.2591960. PMID:27429432.
  • Waltemath D, Karr JR, Bergmann FT, Chelliah V, Hucka M, Krantz M, Liebermeister W, Mendes P, Myers CJ, Pir P, et al. Toward community standards and software for whole-cell modeling. IEEE Trans Biomed Eng. 2017;63:2007–14. doi:10.1109/TBME.2016.2560762.
  • van Kampen NG. Stochastic processes in physics and chemistry. Amsterdam: North-Holland; 1992.