Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
5,441
Views
15
CrossRef citations to date
0
Altmetric
Review

Integrating genomics and genome editing for orphan crop improvement: a bridge between orphan crops and modern agriculture system

, , , , , ORCID Icon, , ORCID Icon & ORCID Icon show all
Pages 1-20 | Received 03 Aug 2022, Accepted 06 Nov 2022, Published online: 06 Jan 2023

References

  • Dawson IK, Jaenicke H. Underutilised plant species: the role of biotechnology. Position Paper No. 1. Crops for the Future; 2006.
  • Umesh MR, Angadi S, Gowda P, Ghimire R, Begna S. Climate-resilient minor crops for food security. In Agronomic crops. Singapore: Springer; 2019. pp. 19–32.
  • Hendre PS, Muthemba S, Kariba R, Muchugi A, Fu Y, Chang Y, Song B, Liu H, Liu M, Liao X, et al. African Orphan Crops Consortium (AOCC): status of developing genomic resources for African orphan crops. Planta. 2019;250(3):989–1003. doi:10.1007/s00425-019-03156-9.
  • Tadele Z, Bartels D. Promoting orphan crops research and development. Germany: Springer-Verlag GmbH; 2019. p. 675–76.
  • Gregory PJ, Mayes S, Hui CH, Jahanshiri E, Julkifle A, Kuppusamy G, Kuan HW, Lin TX, Massawe F, Suhairi TASTM, et al. Crops for the future (CFF): an overview of research efforts in the adoption of underutilised species. Planta. 2019;250(3):979–88. doi:10.1007/s00425-019-03179-2.
  • Dawson IK, Powell W, Hendre P, Bančič J, Hickey JM, Kindt R, Hoad S, Hale I, Jamnadass R. The role of genetics in mainstreaming the production of new and orphan crops to diversify food systems and support human nutrition. New Phytologist. 2019;224(1):37–54. doi:10.1111/nph.15895.
  • Oibiokpa FI, Adoga GI, Saidu AN, Kudirat OS. Nutritional composition of detarium microcarpum fruit. African Journal of Food Science. 2014;8(6):342–50. doi:10.5897/AJFS2014.1161.
  • Cullis C, Kunert KJ. Unlocking the potential of orphan legumes. J Exp Bot. 2017;68(8):1895–903. doi:10.1093/jxb/erw437.
  • Chiurugwi T, Kemp S, Powell W, Hickey LT. Speed breeding orphan crops. Theor Appl Genet. 2019;132(3):607–16. doi:10.1007/s00122-018-3202-7.
  • Mabhaudhi T, Chimonyo VGP, Hlahla S, Massawe F, Mayes S, Nhamo L, Modi AT. Prospects of orphan crops in climate change. Planta. 2019;250(3):695–708. doi:10.1007/s00425-019-03129-y.
  • Borelli T, Hunter D, Padulosi S, Amaya N, Meldrum G, de Oliveira Beltrame DM, Samarasinghe G, Wasike VW, Güner B, Tan A, et al. Local solutions for sustainable food systems: the contribution of orphan crops and wild edible species. Agronomy. 2020;10(2):231. doi:10.3390/agronomy10020231.
  • King AJ, Montes LR, Clarke JG, Itzep J, Perez CAA, Jongschaap REE, Visser RGF, van Loo EN, Graham IA. Identification of QTL markers contributing to plant growth, oil yield and fatty acid composition in the oilseed crop Jatropha curcas L. Biotechnol Biofuels. 2015;8(1):1–17. doi:10.1186/s13068-015-0326-8.
  • Tlili N, Elfalleh W, Saadaoui E, Khaldi A, Triki S, Nasri N. The caper (Capparis L.): ethnopharmacology, phytochemical and pharmacological properties. Fitoterapia. 2011;82(2):93–101. doi:10.1016/j.fitote.2010.09.006.
  • Saikia JP, Konwar BK. Physicochemical properties of starch from aroids of North East India. Int J Food Prop. 2012;15(6):1247–61. doi:10.1080/10942912.2010.491929.
  • Tolera A, Sundstøl F. Supplementation of graded levels of Desmodium intortum hay to sheep feeding on maize stover harvested at three stages of maturity: 1. Feed intake, digestibility and body weight change. Anim Feed Sci Technol. 2000;85(3–4):239–57. doi:10.1016/S0377-8401(00)00135-8.
  • Yu H, Lin T, Meng X, Du H, Zhang J, Liu G, Chen M, Jing Y, Kou L, Li X, et al. A route to de novo domestication of wild allotetraploid rice. Cell. 2021;184(5):1156–70. doi:10.1016/j.cell.2021.01.013.
  • Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of gene editing for climate change in agriculture. Front Sustain Food Syst. 2021;5:685801. doi:10.3389/fsufs.2021.685801.
  • Østerberg JT, Xiang W, Olsen LI, Edenbrandt AK, Vedel SE, Christiansen A, Landes X, Andersen MM, Pagh P, Sandøe P, et al. Accelerating the domestication of new crops: feasibility and approaches. Trends Plant Sci. 2017;22(5):373–84. doi:10.1016/j.tplants.2017.01.004.
  • Padulosi S, King EI, Hunter D, Swaminathan MS, editors. Orphan Crops for Sustainable Food and Nutrition Security: Promoting Neglected and Underutilized Species. London (UK): Routledge; 2021.
  • Talabi AO, Vikram P, Thushar S, Rahman H, Ahmadzai H, Nhamo N, Shahid M, Singh RK. Orphan crops: a best fit for dietary enrichment and diversification in highly deteriorated marginal environments. Front Plant Sci. 2022;13. doi:10.3389/fpls.2022.839704.
  • Raskin I, Ribnicky DM, Komarnytsky S, Ilic N, Poulev A, Borisjuk N, Brinker A, Moreno DA, Ripoll C, Yakoby N, et al. Plants and human health in the twenty-first century. Trends Biotechnol. 2002;20(12):522–31. doi:10.1016/S0167-7799(02)02080-2.
  • Hüdig M, Laibach N, Hein A-C. Genome editing in crop plant research—alignment of expectations and current developments. Plants. 2022;11(2):212. doi:10.3390/plants11020212.
  • Li T, Yang X, Yu Y, Si X, Zhai X, Zhang H, Dong W, Gao C, Xu C. Domestication of wild tomato is accelerated by genome editing. Nat Biotechnol. 2018;36(12):1160–63. doi:10.1038/nbt.4273.
  • Zsögön A, Čermák T, Naves ER, Notini MM, Edel KH, Weinl S, Freschi L, Voytas DF, Kudla J, Peres LEP, et al. De novo domestication of wild tomato using genome editing. Nat Biotechnol. 2018;36(12):1211–16. doi:10.1038/nbt.4272.
  • Shewry PR, Tatham AS. Improving wheat to remove coeliac epitopes but retain functionality. J Cereal Sci. 2016;67:12–21. doi:10.1016/j.jcs.2015.06.005.
  • Varshney RK, Chen W, Li Y, Bharti AK, Saxena RK, Schlueter JA, Donoghue MTA, Azam S, Fan G, Whaley AM, et al. Draft genome sequence of pigeonpea (Cajanus cajan), an orphan legume crop of resource-poor farmers. Nat Biotechnol. 2012;30(1):83. doi:10.1038/nbt.2022.
  • Ribaut J-M, Ragot M. Modernising breeding for orphan crops: tools, methodologies, and beyond. Planta. 2019;250(3):971–77. doi:10.1007/s00425-019-03200-8.
  • Cannarozzi G, Plaza-Wüthrich S, Esfeld K, Larti S, Wilson YS, Girma D, de Castro E, Chanyalew S, Blösch R, Farinelli L, et al. Genome and transcriptome sequencing identifies breeding targets in the orphan crop tef (Eragrostis tef). BMC Genomics. 2014;15(1):1–21. doi:10.1186/1471-2164-15-581.
  • Doust A, Diao X. Genetics and genomics of Setaria. Switzerland (AG): Springer Nature; 2017. Vol. 19.
  • Hittalmani S, Mahesh HB, Shirke MD, Biradar H, Uday G, Aruna YR, Lohithaswa HC, Mohanrao A. Genome and transcriptome sequence of finger millet (Eleusine coracana (L.) Gaertn.) provides insights into drought tolerance and nutraceutical properties. BMC Genomics. 2017;18(1):1–16. doi:10.1186/s12864-017-3850-z.
  • C-Y Y, Fan L. Orphan crops and their wild relatives in the genomic era. Mol Plant. 2021;14(1):27–39. doi:10.1016/j.molp.2020.12.013.
  • Linares OF. African rice (Oryza glaberrima): history and future potential. Proc Natl Acad Sci. 2002;99(25):16360–65. doi:10.1073/pnas.252604599.
  • Caballero B, Finglas PM, Toldra F. Encyclopedia of food and health. In: Jag AA, Accc C-M, RAM S, editors. Brazil: Universidade de Sao Paulo. Sao Paulo. Elsevier Ltd; 2016.
  • Mayes S, Ho WK, Chai HH, Gao X, Kundy AC, Mateva KI, Zahrulakmal M, Hahiree MKIM, Kendabie P, Licea LCS, et al. Bambara groundnut: an exemplar underutilised legume for resilience under climate change. Planta. 2019;250(3):803–20. doi:10.1007/s00425-019-03191-6.
  • Singh M, Upadhyaya HD. Genetic and genomic resources for grain cereals improvement. USA: Elsevier; 2015.
  • Wijngaard H, Arendt EK. Buckwheat. Cereal Chemistry. 2006;83(4):391–401. doi:10.1094/CC-83-0391.
  • Ceballos H, Iglesias CA, Pérez JC, Dixon AGO. Cassava breeding: opportunities and challenges. Plant Mol Biol. 2004;56(4):503–16. doi:10.1007/s11103-004-5010-5.
  • Mafakheri A, Siosemardeh AF, Bahramnejad B, Struik PC, Sohrabi Y. Effect of drought stress on yield, proline and chlorophyll contents in three chickpea cultivars. Australian journal of crop science. 2010;4(8):580–5.
  • Timko MP, Singh BB. Cowpea, a multifunctional legume. Genomics of tropical crop plants. New York (NY): Springer; 2008. p. 227–58.
  • Olango TM, Tesfaye B, Catellani M, Pè ME. Indigenous knowledge, use and on-farm management of enset (Ensete ventricosum (Welw.) Cheesman) diversity in Wolaita, Southern Ethiopia. J Ethnobiol Ethnomed. 2014;10(1):1–18. doi:10.1186/1746-4269-10-41.
  • Caballero B, Finglas P, Toldrá F. Encyclopedia of food and health. Waltham (MA): Academic Press; 2015.
  • Girma D, Korbu L. Genetic improvement of grass pea (Lathyrus sativus) in Ethiopia: an unfulfilled promise. Plant Breeding. 2012;131(2):231–36. doi:10.1111/j.1439-0523.2011.01935.x.
  • Singh M, Upadhyaya HD, Bisht IS. Genetic and genomic resources of grain legume improvement. Waltham (MA): Newnes; 2013.
  • de la Vega MP, Torres AM, Cubero JI, Kole C, editors. Genetics, genomics and breeding of cool season grain legumes. UK: CRC Press; 2011.
  • Zuk M, Richter D, Matuła J, Szopa J. Linseed, the multipurpose plant. Ind Crops Prod. 2015;75:165–77. doi:10.1016/j.indcrop.2015.05.005.
  • Kumar A, Kumar P, Nadendla R. A review on: abelmoschus esculentus (Okra). Int J Pharm Sci Res. 2013;3:129–32.
  • Yadav HP, Gupta SK, Rajpurohit BS, Pareek, N. Pearl millet. In: Broadening the genetic base of grain cereals. New Delhi: Springer; 2016. p. 205–24.
  • Manickavasagan A, Thirunathan P. Pulses: processing and product development. Switzerland: Springer Nature; 2020.
  • Kumar B, Bhalothia P. Orphan crops for future food security. J Biosci. 2020;45(1):1–8. doi:10.1007/s12038-020-00107-5.
  • Atherton J, Rees A. Tropical root and tuber crops: cassava, sweet potato, yams and aroids. 2008;2:1–9. doi:10.1079/9781789243369.0000.
  • Spaenij-Dekking L, Kooy-Winkelaar Y, Koning F. The Ethiopian cereal tef in celiac disease. N Engl J Med. 2005;353(16):1748–49. doi:10.1056/NEJMc051492.
  • Raymundo R, Asseng S, Cammarano D, Quiroz R. Potato, sweet potato, and yam models for climate change: a review. Field Crops Res. 2014;166:173–85. doi:10.1016/j.fcr.2014.06.017.
  • Farooq MS, Uzaiir M, Raza A, Habib M, Xu Y, Yousuf M, Yang SH, Ramzan Khan M. Uncovering the research gaps to alleviate the negative impacts of climate change on food security: a review. Front Plant Sci. 2022;13:927535. doi:10.3389/fpls.2022.927535.
  • Garibaldi LA, Gemmill-Herren B, D’Annolfo R, Graeub BE, Cunningham SA, Breeze TD. Farming approaches for greater biodiversity, livelihoods, and food security. Trends Ecol Evol. 2017;32(1):68–80. doi:10.1016/j.tree.2016.10.001.
  • Rasmussen C, Lagnaoui A, Esbjerg P. Advances in the knowledge of quinoa pests. Food Rev Int. 2003;19(1–2):61–75. doi:10.1081/FRI-120018868.
  • Habiyaremye C, Matanguihan JB, D’Alpoim Guedes J, Ganjyal GM, Whiteman MR, Kidwell KK, Murphy KM. Proso millet (Panicum miliaceum L.) and its potential for cultivation in the Pacific Northwest, US: a review. Front Plant Sci. 2017;7:1961. doi:10.3389/fpls.2016.01961.
  • Bohra A, Tiwari A, Kaur P, Ganie SA, Raza A, Roorkiwal M, Mir RR, Fernie AR, Smýkal P, Varshney RK, et al. The key to the future lies in the past: insights from grain legume domestication and improvement should inform future breeding strategies. Plant Cell Physiol. 2022. doi:10.1093/pcp/pcac086.
  • Raza A, Tabassum J, Fakhar AZ, Sharif R, Chen H, Zhang C, Ju L, Fotopoulos V, Siddique KHM, Singh RK, et al. Smart reprograming of plants against salinity stress using modern biotechnological tools. Crit Rev Biotechnol. 2022;1–28 . doi:10.1080/07388551.2022.2093695
  • Varshney RK, Ribaut J-M, Buckler ES, Tuberosa R, Rafalski JA, Langridge P. Can genomics boost productivity of orphan crops? Nat Biotechnol. 2012;30(12):1172–76. doi:10.1038/nbt.2440.
  • Varshney RK, Bohra A, Yu J, Graner A, Zhang Q, Sorrells ME. Designing future crops: genomics-assisted breeding comes of age. Trends Plant Sci. 2021;26(6):631–49. doi:10.1016/j.tplants.2021.03.010.
  • Varshney RK, Close TJ, Singh NK, Hoisington DA, Cook DR. Orphan legume crops enter the genomics era! Current opinion in plant biology. Current Opinion in Plant Biology. 2009;12(2):202–10. doi:10.1016/j.pbi.2008.12.004.
  • Tadele Z. Orphan crops: their importance and the urgency of improvement. Planta. 2019;250(3):677–94. doi:10.1007/s00425-019-03210-6.
  • Jackson SA, Iwata A, Lee SH, Schmutz J, Shoemaker R. Sequencing crop genomes: approaches and applications. New Phytologist. 2011;191(4):915–25. doi:10.1111/j.1469-8137.2011.03804.x.
  • Olsen KM, Wendel JF. A bountiful harvest: genomic insights into crop domestication phenotypes. Annu Rev Plant Biol. 2013;64(1):47–70. doi:10.1146/annurev-arplant-050312-120048.
  • Díaz A, Zikhali M, Turner AS, Isaac P, Laurie DA. Copy number variation affecting the Photoperiod-B1 and Vernalization-A1 genes is associated with altered flowering time in wheat (Triticum aestivum). PloS one. 2012;7(3):e33234. doi:10.1371/journal.pone.0033234.
  • Knox AK, Dhillon T, Cheng H, Tondelli A, Pecchioni N, Stockinger EJ. CBF gene copy number variation at frost resistance-2 is associated with levels of freezing tolerance in temperate-climate cereals. Theor Appl Genet. 2010;121(1):21–35. doi:10.1007/s00122-010-1288-7.
  • Morrell PL, Buckler ES, Ross-Ibarra J. Crop genomics: advances and applications. Nat Rev Genet. 2012;13(2):85–96. doi:10.1038/nrg3097.
  • Salman-Minkov A, Sabath N, Mayrose I. Whole-genome duplication as a key factor in crop domestication. Nature Plants. 2016;2(8):1–4. doi:10.1038/nplants.2016.115.
  • Wu J, Wang Z, Shi Z, Zhang S, Ming R, Zhu S, Khan MA, Tao S, Korban SS, Wang H, et al. The genome of the pear (Pyrus bretschneideri Rehd.). Genome Res. 2013;23(2):396–408. doi:10.1101/gr.144311.112.
  • Clouse JW, Adhikary D, Page JT, Ramaraj T, Deyholos MK, Udall JA, Fairbanks DJ, Jellen EN, Maughan PJ. The amaranth genome: genome, transcriptome, and physical map assembly. Plant Genome. 2016;9(1):lantgenome2015–07. doi:10.3835/plantgenome2015.07.0062.
  • Regalado JJ, Tossi VE, Burrieza HP, Encina CL, Pitta-Alvarez SI. Micropropagation protocol for coastal quinoa. Plant Cell, Tissue and Organ Culture (PCTOC). 2020;142(1):213–19. doi:10.1007/s11240-020-01840-3.
  • Wang W, Feng B, Xiao J, Xia Z, Zhou X, Li P, Zhang W, Wang Y, Møller BL, Zhang P, et al. Cassava genome from a wild ancestor to cultivated varieties. Nat Commun. 2014;5(1):1–9.
  • Yang MM, Wang J, Dong L, Kamizaki K, Wang Z, Tamada K, Takumi T, Hashimoto R, Otani H, Pazour GJ, et al. Lack of association of C3 gene with uveitis: additional insights into the genetic profile of uveitis regarding complement pathway genes. Sci Rep. 2017;7(1):1–8. doi:10.1038/s41598-016-0028-x.
  • Siadjeu C, Pucker B, Viehöver P, Albach DC, Weisshaar B. High contiguity de novo genome sequence assembly of trifoliate yam (Dioscorea dumetorum) using long read sequencing. Genes. 2020;11(3):274. doi:10.3390/genes11030274.
  • Saeed F, Chaudhry UK, Bakhsh A, Raza A, Saeed Y, Bohra A, Varshney RK. Moving beyond DNA sequence to improve plant stress responses. Front Genet. 2022;13:874648. doi:10.3389/fgene.2022.874648.
  • Raza A. Metabolomics: a systems biology approach for enhancing heat stress tolerance in plants. Plant Cell Rep. 2022;41(3):741–63. doi:10.1007/s00299-020-02635-8.
  • Raza A, Tabassum J, Zahid Z, Charagh S, Bashir S, Barmukh R, Khan RSA, Barbosa F, Zhang C, Chen H, et al. Advances in ‘omics’ approaches for improving toxic metals/metalloids tolerance in plants. Front Plant Sci. 2022;12:794373. doi:10.3389/fpls.2021.794373.
  • Raza A, Razzaq A, Mehmood SS, Hussain MA, Wei S, He H, Zaman QU, Xuekun Z, Yong C, Hasanuzzaman M, et al. Omics: the way forward to enhance abiotic stress tolerance in Brassica napus L. GM Crops Food. 2021;12(1):251–81. doi:10.1080/21645698.2020.1859898.
  • Raza A, Tabassum J, Kudapa H, Varshney RK. Can omics deliver temperature resilient ready-to-grow crops? Crit Rev Biotechnol. 2021;41(8):1209–32. doi:10.1080/07388551.2021.1898332.
  • Raza A, Mubarik, MS, Sharif, R, Habib, M, Jabeen, W, Zhang, C, Chen, H, Chen, ZH, Siddique, KHM, Zhuang, W, Varshney, RK , Developing drought‐smart, ready‐to‐grow future crops. Plant Genome 2022;():e20279. doi:10.1002/tpg2.20279.
  • L-m C, X-w L, T-j H, Li P-J, Liu Y, Zhou S-X, Wu Q-C, Chen -T-T, Lu Y-B, Hou Y-M, et al. Comparative biochemical and transcriptome analyses in tomato and eggplant reveal their differential responses to Tuta absoluta infestation. Genomics. 2021;113(4):2108–21. doi:10.1016/j.ygeno.2021.05.002.
  • Bhardwaj AR, Joshi G, Kukreja B, Malik V, Arora P, Pandey R, Shukla RN, Bankar KG, Katiyar-Agarwal S, Goel S, et al. Global insights into high temperature and drought stress regulated genes by RNA-Seq in economically important oilseed crop Brassica juncea. BMC Plant Biol. 2015;15(1):1–15. doi:10.1186/s12870-014-0405-1.
  • Ozsolak F, Milos PM. RNA sequencing: advances, challenges and opportunities. Nat Rev Genet. 2011;12(2):87–98. doi:10.1038/nrg2934.
  • Ranasinghe R, Maduwanthi SDT, Marapana R. Nutritional and health benefits of jackfruit (Artocarpus heterophyllus Lam.): a review. Int J Food Sci. 2019;2019.
  • Golisz A, Sugano M, Fujii Y. Microarray expression profiling of Arabidopsis thaliana L. in response to allelochemicals identified in buckwheat. J Exp Bot. 2008;59(11):3099–109. doi:10.1093/jxb/ern168.
  • Zhu YY, Zeng HQ, Dong CX, Yin XM, Shen QR, Yang ZM. microRNA expression profiles associated with phosphorus deficiency in white lupin (Lupinus albus L.). Plant Sci. 2010;178(1):23–29. doi:10.1016/j.plantsci.2009.09.011.
  • Schmidt S, Blom JF, Pernthaler J, Berg G, Baldwin A, Mahenthiralingam E, Eberl L. Production of the antifungal compound pyrrolnitrin is quorum sensing-regulated in members of the Burkholderia cepacia complex. Environ Microbiol. 2009;11(6):1422–37. doi:10.1111/j.1462-2920.2009.01870.x.
  • Srivastava S, Srivastava AK, Sablok G, Deshpande TU, Suprasanna P. Transcriptomics profiling of Indian mustard (Brassica juncea) under arsenate stress identifies key candidate genes and regulatory pathways. Front Plant Sci. 2015;6:646. doi:10.3389/fpls.2015.00646.
  • Manning K, Tör M, Poole M, Hong Y, Thompson AJ, King GJ, Giovannoni JJ, Seymour GB. A naturally occurring epigenetic mutation in a gene encoding an SBP-box transcription factor inhibits tomato fruit ripening. Nat Genet. 2006;38(8):948–52. doi:10.1038/ng1841.
  • Butelli E, Licciardello C, Zhang Y, Liu J, Mackay S, Bailey P, Reforgiato-Recupero G, Martin C. Retrotransposons control fruit-specific, cold-dependent accumulation of anthocyanins in blood oranges. Plant Cell. 2012;24(3):1242–55. doi:10.1105/tpc.111.095232.
  • Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S-I, Natsume T, Takehana K, Yamada N, et al. Nutrient-dependent mTORC1 association with the ULK1–Atg13–FIP200 complex required for autophagy. Mol Biol Cell. 2009;20(7):1981–91. doi:10.1091/mbc.e08-12-1248.
  • Chang Y, Liu H, Liu M, Liao X, Sahu SK, Fu Y, Song B, Cheng S, Kariba R, Muthemba S, et al. The draft genomes of five agriculturally important African orphan crops. GigaScience. 2019;8(3):giy152. doi:10.1093/gigascience/giy152.
  • Ong-Abdullah M, Ordway JM, Jiang N, Ooi S-E, Kok S-Y, Sarpan N, Azimi N, Hashim AT, Ishak Z, Rosli SK, et al. Loss of Karma transposon methylation underlies the mantled somaclonal variant of oil palm. Nature. 2015;525(7570):533–37. doi:10.1038/nature15365.
  • Varshney RK, Saxena RK, Upadhyaya HD, Khan AW, Yu Y, Kim C, Rathore A, Kim D, Kim J, An S, et al. Whole-genome resequencing of 292 pigeonpea accessions identifies genomic regions associated with domestication and agronomic traits. Nat Genet. 2017;49(7):1082–88. doi:10.1038/ng.3872.
  • Tohge T, de Souza Lp, Fernie AR, de Souza LP. Current understanding of the pathways of flavonoid biosynthesis in model and crop plants. J Exp Bot. 2017;68(15):4013–28. doi:10.1093/jxb/erx177.
  • Paszke A, Gross S, Massa F, Lerer A, Bradbury J, Chanan G, Killeen T, Lin Z, Gimelshein N, Antiga L, et al. Pytorch: an imperative style, high-performance deep learning library. Adv Neural Inf Process Syst. 2019;32.
  • Klee HJ, Tieman DM. The genetics of fruit flavour preferences. Nat Rev Genet. 2018;19(6):347–56. doi:10.1038/s41576-018-0002-5.
  • Beleggia R, Rau D, Laidò G, Platani C, Nigro F, Fragasso M, De Vita P, Scossa F, Fernie AR, Nikoloski Z, et al. Evolutionary metabolomics reveals domestication-associated changes in tetraploid wheat kernels. Mol Biol Evol. 2016;33(7):1740–53. doi:10.1093/molbev/msw050.
  • Gapare W, Liu S, Conaty W, Zhu Q-H, Gillespie V, Llewellyn D, Stiller W, Wilson I. Historical datasets support genomic selection models for the prediction of cotton fiber quality phenotypes across multiple environments. G3: Genes, Genomes, Genetics. 2018;8(5):1721–32. doi:10.1534/g3.118.200140.
  • Langner T, Kamoun S, Belhaj K. CRISPR crops: plant genome editing toward disease resistance. Annu Rev Phytopathol. 2018;56(1):479–512. doi:10.1146/annurev-phyto-080417-050158.
  • Yin K, Gao C, Qiu J-L. Progress and prospects in plant genome editing. Nature Plants. 2017;3(8):1–6. doi:10.1038/nplants.2017.107.
  • Doebley JF, Gaut BS, Smith BD. The molecular genetics of crop domestication. Cell. 2006;127(7):1309–21. doi:10.1016/j.cell.2006.12.006.
  • Čermák T, Curtin SJ, Gil-Humanes J, Čegan R, Kono TJY, Konečná E, Belanto JJ, Starker CG, Mathre JW, Greenstein RL, et al. A multipurpose toolkit to enable advanced genome engineering in plants. Plant Cell. 2017;29(6):1196–217. doi:10.1105/tpc.16.00922.
  • Diamond J. Evolution, consequences and future of plant and animal domestication. Nature. 2002;418(6898):700–07. doi:10.1038/nature01019.
  • Valle‐Echevarria AD, Fumia N, Gore MA, Kantar M. Accelerating crop domestication in the era of gene editing. Plant Breed Rev. 2021;45:185–211.
  • Rodríguez-Leal D, Lemmon ZH, Man J, Bartlett ME, Lippman ZB. Engineering quantitative trait variation for crop improvement by genome editing. Cell. 2017;171(2):470–80. doi:10.1016/j.cell.2017.08.030.
  • Falke KC, Glander S, He F, Hu J, de Meaux J, Schmitz G. The spectrum of mutations controlling complex traits and the genetics of fitness in plants. Curr Opin Genet Dev. 2013;23(6):665–71. doi:10.1016/j.gde.2013.10.006.
  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Van Eck J, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants. 2018;4(10):766–70. doi:10.1038/s41477-018-0259-x.
  • Zsögön A, Peres LEP, Xiao Y, Yan J, Fernie AR. Enhancing crop diversity for food security in the face of climate uncertainty. Plant J. 2022;109(2):402–14. doi:10.1111/tpj.15626.
  • Zhao M, Tang S, Zhang H, He M, Liu J, Zhi H, Sui Y, Liu X, Jia G, Zhao Z, et al. DROOPY LEAF1 controls leaf architecture by orchestrating early brassinosteroid signaling. Proc Natl Acad Sci. 2020;117(35):21766–74. doi:10.1073/pnas.2002278117.
  • Mamidi S, Healey A, Huang P, Grimwood J, Jenkins J, Barry K, Sreedasyam A, Shu S, Lovell JT, Feldman M, et al. A genome resource for green millet Setaria viridis enables discovery of agronomically valuable loci. Nat Biotechnol. 2020;38(10):1203–10. doi:10.1038/s41587-020-0681-2.
  • Bull SE, Seung D, Chanez C, Mehta D, Kuon J-E, Truernit E, Hochmuth A, Zurkirchen I, Zeeman SC, Gruissem W, et al. Accelerated ex situ breeding of GBSS - and PTST1 -edited cassava for modified starch. Sci Adv. 2018;4(9):eaat6086. doi:10.1126/sciadv.aat6086.
  • Prochnik S, Marri PR, Desany B, Rabinowicz PD, Kodira C, Mohiuddin M, Rodriguez F, Fauquet C, Tohme J, Harkins T, et al. The cassava genome: current progress, future directions. Trop Plant Biol. 2012;5(1):88–94. doi:10.1007/s12042-011-9088-z.
  • Cassava NNMA. Manihot esculenta Crantz, genetic resources: origin of the crop, its evolution and relationships with wild relatives. Genet Mol Res. 2002;1:298–305.
  • Malik AI, Kongsil P, Nguyễn VA, Ou W, Srean P, López-Lavalle LA, Utsumi Y, Lu C, Kittipadakul P, Nguyễn HH, et al. Cassava breeding and agronomy in Asia: 50 years of history and future directions. Breed Sci. 2020;70:18180.
  • Gomez MA, Lin ZD, Moll T, Chauhan RD, Hayden L, Renninger K, Beyene G, Taylor NJ, Carrington JC, Staskawicz BJ, et al. Simultaneous CRISPR/Cas9-mediated editing of cassava eIF4E isoforms nCBP-1 and nCBP-2 reduces cassava brown streak disease symptom severity and incidence. Plant Biotechnol J. 2019;17(2):421–34. doi:10.1111/pbi.12987.
  • Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ, et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. 2018;16(7):1275–82. doi:10.1111/pbi.12868.
  • Hu Y, Li W, Gao T, Cui Y, Jin Y, Li P, Ma Q, Liu X, Cao C. The severe acute respiratory syndrome coronavirus nucleocapsid inhibits type I interferon production by interfering with TRIM25-mediated RIG-I ubiquitination. J Virol. 2017;91(8):e02143–16. doi:10.1128/JVI.02143-16.
  • Veley KM, Okwuonu I, Jensen G, Yoder M, Taylor NJ, Meyers BC, Bart RS. Gene tagging via CRISPR-mediated homology-directed repair in cassava. G3. 2021;11(4):jkab028. doi:10.1093/g3journal/jkab028.
  • Tyagi S, Kumar R, Kumar V, Won SY, Shukla P. Engineering disease resistant plants through CRISPR-Cas9 technology. GM Crops Food. 2021;12(1):125–44. doi:10.1080/21645698.2020.1831729.
  • Odipio J, Alicai T, Nusinow D, Bart R, Taylor N, editors. CRISPR/Cas9-mediated disruption of multiple TFL1-like floral repressors activates flowering in cassava 2018: SPRINGER 233 SPRING ST, New York, NY 10013 USA.
  • Odipio J, Alicai T, Ingelbrecht I, Nusinow DA, Bart R, Taylor NJ. Efficient CRISPR/Cas9 genome editing of phytoene desaturase in cassava. Front Plant Sci. 2017;8:1780. doi:10.3389/fpls.2017.01780.
  • Comai L. The taming of the shrub. Nat Plants. 2018;4(10):742–43. doi:10.1038/s41477-018-0275-x.
  • Alonso-Blanco C, Aarts MGM, Bentsink L, Keurentjes JJB, Reymond M, Vreugdenhil D, Koornneef M. What has natural variation taught us about plant development, physiology, and adaptation? Plant Cell. 2009;21(7):1877–96. doi:10.1105/tpc.109.068114.
  • Isik F, Kumar S, Martínez-García PJ, Iwata H, Yamamoto T. Acceleration of forest and fruit tree domestication by genomic selection. In: Christophe P, Anne-Françoise Adam-Blondon, Editors. Advances in botanical research. USA: Elsevier; 2015, Vol. 74, p. 93–124.
  • Migicovsky Z, Myles S. Exploiting wild relatives for genomics-assisted breeding of perennial crops. Front Plant Sci. 2017;8:460. doi:10.3389/fpls.2017.00460.
  • Cichy KA, Wiesinger JA, Mendoza FA. Genetic diversity and genome-wide association analysis of cooking time in dry bean (Phaseolus vulgaris L.). Theor Appl Genet. 2015;128(8):1555–67. doi:10.1007/s00122-015-2531-z.
  • Ozimati A, Kawuki R, Esuma W, Kayondo IS, Wolfe M, Lozano R, Rabbi I, Kulakow P, Jannink J-L. Training population optimization for prediction of cassava brown streak disease resistance in West African Clones. G3: Genes, Genomes, Genetics. 2018;8(12):3903–13. doi:10.1534/g3.118.200710.
  • Ghosh S, Watson A, Gonzalez-Navarro OE, Ramirez-Gonzalez RH, Yanes L, Mendoza-Suárez M, Simmonds J, Wells R, Rayner T, Green P, et al. Speed breeding in growth chambers and glasshouses for crop breeding and model plant research. Nat Protoc. 2018;13(12):2944–63. doi:10.1038/s41596-018-0072-z.
  • Watson A, Ghosh S, Williams MJ, Cuddy WS, Simmonds J, Rey M-D, Asyraf Md Hatta M, Hinchliffe A, Steed A, Reynolds D, et al. Speed breeding is a powerful tool to accelerate crop research and breeding. Nature Plants. 2018;4(1):23–29. doi:10.1038/s41477-017-0083-8.
  • Stetter MG, Zeitler L, Steinhaus A, Kroener K, Biljecki M, Schmid KJ. Crossing methods and cultivation conditions for rapid production of segregating populations in three grain amaranth species. Front Plant Sci. 2016;7:816. doi:10.3389/fpls.2016.00816.
  • Li H, Birol I. Minimap2: pairwise alignment for nucleotide sequences. Bioinformatics. 2018;34(18):3094–100. doi:10.1093/bioinformatics/bty191.
  • Würschum T, Leiser WL, Jähne F, Bachteler K, Miersch M, Hahn V. The soybean experiment ‘1000 Gardens’: a case study of citizen science for research, education, and beyond. Theor Appl Genet. 2019;132(3):617–26. doi:10.1007/s00122-018-3134-2.
  • Bhargav DK, Meena HP, Ppb PPB. Participatory plant breeding: farmers as breeders. Popular Kheti. 2014;2:7–14.
  • Bragg JG, Supple MA, Andrew RL, Borevitz JO. Genomic variation across landscapes: insights and applications. New Phytologist. 2015;207(4):953–67. doi:10.1111/nph.13410.
  • Coop G, Witonsky D, Di Rienzo A, Pritchard JK. Using environmental correlations to identify loci underlying local adaptation. Genetics. 2010;185(4):1411–23. doi:10.1534/genetics.110.114819.
  • Fick SE, Hijmans RJ. WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas. Int J Climatol. 2017;37(12):4302–15. doi:10.1002/joc.5086.
  • Batjes NH, Ribeiro E, Van Oostrum A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019). Earth Sys Sci Data. 2020;12(1):299–320. doi:10.5194/essd-12-299-2020.
  • Guerrero J, Andrello M, Burgarella C, Manel S. Soil environment is a key driver of adaptation in Medicago truncatula: new insights from landscape genomics. New Phytologist. 2018;219(1):378–90. doi:10.1111/nph.15171.
  • Lasky JR, Forester BR, Reimherr M. Coherent synthesis of genomic associations with phenotypes and home environments. Mol Ecol Resour. 2018;18(1):91–106. doi:10.1111/1755-0998.12714.
  • Rathinam M, Mishra P, Mahato AK, Singh NK, Rao U, Sreevathsa R. Comparative transcriptome analyses provide novel insights into the differential response of Pigeonpea (Cajanus cajan L.) and its wild relative (Cajanus platycarpus (Benth.) Maesen) to herbivory by Helicoverpa armigera (Hübner). Plant Mol Biol. 2019;101(1):163–82. doi:10.1007/s11103-019-00899-7.
  • Yu F, Liang K, Fang T, Zhao H, Han X, Cai M, Qiu F. A group VII ethylene response factor gene, ZmEREB180, coordinates waterlogging tolerance in maize seedlings. Plant Biotechnol J. 2019 Dec;17(12):2286–98.
  • Prescott-Allen C, Prescott-Allen R. The first resource: wild species in the North-American economy. New Haven: Yale University Press; 1986.
  • Brar DS, Khush GS. Alien introgression in rice. Oryza: from molecule to plant. Plant Molecular Biology. 1997;35:35–47.
  • Rick CM, Chetelat RT. editors. Utilization of related wild species for tomato improvement. Leuven, Belgium; 1995.
  • Crute IR. From breeding to cloning (and back again?): a case study with lettuce downy mildew. Annu Rev Phytopathol. 1992;30(1):485–506. doi:10.1146/annurev.py.30.090192.002413.
  • Pink DAC, Walkey DGA. Resistance in marrow (Cucurbita pepo L.) to different strains of cucumber mosaic virus. J Agric Sci. 1984;103(3):519–21. doi:10.1017/S0021859600043616.
  • Glaszmann J-C, Kilian B, Upadhyaya HD, Varshney RK. Accessing genetic diversity for crop improvement. Curr Opin Plant Biol. 2010;13(2):167–73. doi:10.1016/j.pbi.2010.01.004.
  • Pandey MK, Upadhyaya HD, Rathore A, Vadez V, Sheshshayee MS, Sriswathi M, Govil M, Kumar A, Gowda MVC, Sharma S, et al. Genomewide association studies for 50 agronomic traits in peanut using the ‘reference set’comprising 300 genotypes from 48 countries of the semi-arid tropics of the world. PLoS one. 2014;9(8):e105228. doi:10.1371/journal.pone.0105228.
  • Caniato FF, Hamblin MT, Guimaraes CT, Zhang Z, Schaffert RE, Kochian LV, Magalhaes JV. Association mapping provides insights into the origin and the fine structure of the sorghum aluminum tolerance locus. AltSB PLoS One. 2014;9(1):e87438. doi:10.1371/journal.pone.0087438.
  • Carvalho JG, Schaffert RE, Malosetti M, Viana JHM, Menezes CB, Silva LA, Guimaraes CT, Coelho AM, Kochian LV, van Eeuwijk FA, et al. Back to acid soil fields: the citrate transporter SbMATE is a major asset for sustainable grain yield for sorghum cultivated on acid soils. G3: Genes, Genomes, Genetics. 2016;6(2):475–84. doi:10.1534/g3.115.025791.
  • Pocnet C, Dupuis M, Congard A, Jopp D. Personality and its links to quality of life: mediating effects of emotion regulation and self-efficacy beliefs. Motiv Emot. 2017;41(2):196–208. doi:10.1007/s11031-017-9603-0.
  • Leonelli S, Davey RP, Arnaud E, Parry G, Bastow R. Data management and best practice for plant science. Nat Plants. 2017;3(6):1–4. doi:10.1038/nplants.2017.86.