Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
1,944
Views
2
CrossRef citations to date
0
Altmetric
Research Article

DNA-free genome editing for ZmPLA1 gene via targeting immature embryos in tropical maize

, , , , , & show all
Pages 1-7 | Received 15 Dec 2022, Accepted 25 Mar 2023, Published online: 05 Apr 2023

References

  • Forster BP, Thomas W. Doubled haploids in genetics and plant breeding. Plant Breed Rev. 2005;25:57–88.
  • Chang M, Coe E. Molecular genetics approaches to maize improvement. In: L KA A LB, editors. Biotechnology in agriculture and forestry. Berlin, Heidelberg, Germany: Springer; 2009. pp. 127–42.
  • Gordillo G, Geiger H. Alternative recurrent selection strategies using doubled haploid lines in hybrid maize breeding. Crop Sci. 2008;48(3):911–22. doi:10.2135/cropsci2007.04.0223.
  • Shan Q, Zhang Y, Chen K, Zhang K, Gao C. Creation of fragrant rice by targeted knockout of the OsBADH2 gene using TALEN technology. Plant Biotechno. 2015;l13(6):791–800. doi:10.1111/pbi.12312.
  • Svitashev S, Schwartz C, Lenderts B, Young JK, Cigan MA. Genome editing in maize directed by CRISPR–Cas9 ribonucleoprotein complexes. Nat Com. 2016;7(1):1–7. doi:10.1038/ncomms13274.
  • Hu H, Schrag TA, Peis R, Unterseer S, Schipprack W, Chen S, Lai J, Yan J, Prasanna M, Nair SK, et al. The genetic basis of haploid induction in maize identified with a novel Genome-Wide association method. Genetics. 2016;202(4):1267–76. doi:10.1534/genetics.115.184234.
  • Prigge V, Xu X, Li L, Babu R, Chen S, Atlin GN, Melchinger AE. New insights into the genetics of in vivo Induction of maternal haploids, the backbone of doubled haploid technology in maize. Genetics. 2012;190:781–93. doi:10.1534/genetics.111.133066.
  • Kelliher T, Starr D, Richbourg L, Chintamanani S, Delzer B, Nuccio ML, Green J, Chen Z, McCuiston J, Wang W, et al. Matrilineal, a sperm-specific phospholipase, triggers maize haploid induction. Nature. 2017;542(7639):105–09. doi:10.1038/nature20827.
  • Zhong Z, Liu C, Xi Q, Jiao Y, Wang D, Wang Y, Liu Z, Chen C, Chen B, Tian X, et al. Mutation of ZmDMP enhances haploid induction in maize. Nature Plant. 2019;5(6):575–80. doi:10.1038/s41477-019-0443-7.
  • Li Y, Lin Z, Yue Y, Zhao H, Fei X, Liu C, Chen S, Lai J, Song W, Song W. Loss-of-function alleles of ZmPLD3 cause haploid induction in maize. Nature Plant. 2021;7(12):1579–88. doi:10.1038/s41477-021-01037-2.
  • Abhishek A, Chikkappa GK, Ravindra N, Meenakshi B, Ramteke PW, Pradyumn K, Sain D, Sai KR. Differential effect of immature embryo’s age and genotypes on embryogenic type II callus production and whole plant regeneration in tropical maize inbred lines (Zea mays l.). Ind J Gen Plant Breed. 2014;74(3):317–24. doi:10.5958/0975-6906.2014.00849.9.
  • Beckert B, Masquida B. Synthesis of RNA by in vitro transcription. Method Mol Bio. 2011;703:29–41.
  • Mookkan M, Mookkan. Particle bombardment – mediated gene transfer and GFP transient expression in Setaria viridis. Plant Signalling Behav. 2018;13(4):67–76. doi:10.1080/15592324.2018.1441657.
  • Mehravar M, Shirazi A, Mehrazar MM, Nazari M. In vitro pre-validation of gene editing by CRISPR/Cas9 ribonucleoprotein. Avicenna J Med Biotechnol. 2018;11:259–63.
  • Murray MG, Thompson WF. Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res. 1980;8(19):4321–25. doi:10.1093/nar/8.19.4321.
  • Coe E. A line of maize with high haploid frequency. Amer Naturalist. 1959;93(873):381–82. doi:10.1086/282098.
  • Gilles LM, Khaled A, Laffaire J, Chaignon S, Gendrot G, Laplaige J, Berges H, Beydon G, Bayle V, Barret P, et al. Loss of pollen-specific phospholipase not like dad (NLD) triggers gynogenesis in maize. Embo J. 2017;36(6):1–11. doi:10.15252/embj.201796603.
  • Liu H, Ding Y, Zhou Y, Jin W, Xie K, Chen L. CRISPR-P 2.0: an improved CRISPR-Cas9 tool for genome editing in plants. Mol Plant. 2017;10(3):530–32. doi:10.1016/j.molp.2017.01.003.
  • Hu Z, Wang L, Shi Z, Jiang J, Li X, Chen Y, Li K, Luo D. Customized one-step preparation of sgRNA transcription templates via overlapping PCR Using short primers and its application in vitro and in vivo gene editing. Cell Bisci. 2019;9(1):1–7. doi:10.1186/s13578-019-0350-7.
  • Liang X, Potter J, Kumar S, Zou Y, Quintanilla R, Sridharan M, Carte J, Chen W, Roark N, Ranganathan S, et al. Rapid and highly efficient mammalian cell engineering via Cas9 protein transfection. J Biotechnol. 2015;7098:1–10. doi:10.1016/j.jbiotec.2015.04.024.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–Guided DNA endonuclease in adaptive bacterial immunity. Science. 2012;337(6096):816–21. doi:10.1126/science.1225829.
  • Huang X, Wei Z. High-frequency plant regeneration through callus initiation from mature embryos of maize (Zea Mays L.). Plant Cell Rep. 2004;22(11):793–800. doi:10.1007/s00299-003-0748-9.
  • Vladimir S, Gilbertson L, Adae P, Duncan D. Agrobacterium-mediated transformation of seedling-derived maize callus. Plant Cell Rep. 2006;25(4):320–28. doi:10.1007/s00299-005-0058-5.
  • Al-Abed D, Rudrabhatla S, Talla R, Goldman S. Split seed: a new tool for maize researchers. Planta. 2006;223(6):1355–60. doi:10.1007/s00425-006-0237-9.
  • Bohorova NE, Luna B, Brito RM, Huerta LD, Hoisington DA. Regeneration potential of tropical, subtropical, mid-altitude and highland maize inbreds. Maydica. 1995;4:275–81.
  • Duncan DR, Williams ME, Zehr BE, Widholm JM. The production of callus capable of plant regeneration from immature embryos of numerous Zea mays genotypes. Planta. 1985;165:322–32. doi:10.1007/BF00392228.
  • Furini A, Jewell DC. Somatic embryogenesis and plant regeneration from immature and mature embryos of tropical and subtropical Zea Mays L. Genotypes. Maydica. 1994;39L:155–64.
  • Guruprasad M, Sridevi V, Kumar BK, Kumar G, Kumar S. An efficient regeneration and genetic transformation of maize through Agrobacterium and particle bombardment in immature embryos. Indian J Agric Res. 2016;50:414–20.
  • Malini N, Kumar S, Ramakrishnan SH. Regeneration of Indian maize genotypes (Zea mays L.) from immature embryo culture through callus induction. J Appl Nat Sci. 2015;7(1):131–37. doi:10.31018/jans.v7i1.576.
  • Feng C, Yuan J, Wang R, Liu Y, Birchler JA, Han F. Efficient targeted genome modification in maize using the CRISPR/Cas9 system. J Genet Genomics. 2015;43(1):37–43. doi:10.1016/j.jgg.2015.10.002.
  • Wang J, Meng X, Hu X, Sun T, Li J, Wang K, Yu H. xCas9 expands the scope of genome editing with reduced efficiency in rice. Plant Biotechnol J. 2019;17(4):709–11. doi:10.1111/pbi.13053.