Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
1,361
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Safety Assessment of the CP4 EPSPS and NPTII Proteins in Eucalyptus

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Pages 1-14 | Received 07 Mar 2023, Accepted 02 Jun 2023, Published online: 19 Jun 2023

References

  • Barua SK, Lehtonen P, & Pahkasalo T. Plantation vision: potentials, challenges and policy options for global industrial forest plantation development. Int Forest Rev. 2014;16(2):117–27. doi:10.1505/146554814811724801.
  • FAO. 2020. “Global forest resources assessment, 2020: main report.Rome.”
  • Wen YG, Zhou XG, Yu SF, Zhu HG. The predicament and countermeasures of development of global Eucalyptus plantations. Guangxi Sci. 2018;25:107–16.
  • da Silva PHM, Poggiani F, Libardi PL, Gonçalves AN. Fertilizer management of eucalypt plantations on sandy soil in Brazil: initial growth and nutrient cycling. For Ecol Manage. 2013;301:67–78. doi:10.1016/j.foreco.2012.10.033.
  • Poschenrieder C, Gunsé B, Corrales I, Barceló J. A glance into aluminum toxicity and resistance in plants. Sci Total Environ. 2008;400(1–3):356–68. doi:10.1016/j.scitotenv.2008.06.003.
  • Ramantswana M, Guerra SPS, Ersson BT. Advances in the mechanization of regenerating plantation forests: a review. Current For Rep. 2020;6(2):143–58. doi:10.1007/s40725-020-00114-7.
  • Zaiton S, Sheriza MR, Ainishifaa R, Alfred K, Norfaryanti K. Eucalyptus in Malaysia: review on environmental impacts. J Landsc Ecol. 2020;13(2):79–94. doi:10.2478/jlecol-2020-0011.
  • Zegeye H. Environmental and socio-economic implications of Eucalyptus in Ethiopia. Ethiop Inst Agric Res. 2010;184–205.
  • Coelho AJP, Villa PM, Matos FAR, Heringer G, Bueno ML, de Paula Almado R, Meira-Neto JAA. Atlantic forest recovery after long-term eucalyptus plantations: the role of zoochoric and shade-tolerant tree species on carbon stock. For Ecol Manage. 2022;503:119789. doi:10.1016/j.foreco.2021.119789.
  • Grossberg SP. Forest management. Hauppauge, New York, United States: Nova Science Publishers; 2009.
  • Sembiring N, Napitupulu HL, Sipahutar AI, Sembiring MT. A review of sustainable replanting eucalyptus: higher sustainable productivity. IOP Conf Ser: Mater Sci Eng. 2020;935(1):012068. IOP Publishing. doi:10.1088/1757-899X/935/1/012068.
  • Reddy C. A study on crop weed competition in field crops. J Pharmacogn Phytochem. 2018;7:3235–40.
  • Jaworski EG. Mode of action of N-phosphonomethylglycine. Inhibition of aromatic amino acid biosynthsis. J Agr Food Chem. 1972;20(6):1195–98. doi:10.1021/jf60184a057.
  • Padgette SR, Kolacz KH, Delannay X, Re DB, LaVallee BJ, Tinius CN, Rhodes WK, Otero YI, Barry GF, Eichholtz DA, et al. Development, identification, and characterization of a glyphosate‐tolerant soybean line. Crop Sci. 1995;35(5):1451–61. doi:10.2135/cropsci1995.0011183X003500050032x.
  • Junior WRC, da Costa YKS, Carbonari CA, Duke SO, Alves PLDCA, de Carvalho LB. Growth, morphological, metabolic and photosynthetic responses of clones of eucalyptus to glyphosate. For Ecol Manage. 2020;470:118218.
  • Pereira FCM, Nepomuceno MP, Pires RN, Parreira MC, Alves PLDCA. Response of eucalyptus (Eucalyptus urograndis) plants at different doses of glyphosate. J Agric Sci. 2013;5(1):66. doi:10.5539/jas.v5n1p66.
  • Barry G, Kishore G, Padgette S, Taylor M, Kolacz K, Weldon M, Re D, Eichholtz D, Fincher K, Hallas L. Inhibitors of amino acid biosynthesis: strategies for imparting glyphosate tolerance to crop plants. Current topics in plant physiology (USA). 1992.
  • Sammons RD, Gaines TA. Glyphosate resistance: state of knowledge. Pest Manag Sci. 2014;70(9):1367–77. doi:10.1002/ps.3743.
  • Beck E, Ludwig G, Auerswald EA, Reiss B, Schaller H. Nucleotide sequence and exact localization of the neomycin phosphotransferase gene from transposon Tn5. Gene. 1982;19(3):327–36. doi:10.1016/0378-1119(82)90023-3.
  • Toth M, Zajicek J, Kim C, Chow JW, Smith C, Mobashery S, Vakulenko S. Kinetic mechanism of enterococcal aminoglycoside phosphotransferase 2 ‘‘-Ib. Biochemistry. 2007;46(18):5570–78. doi:10.1021/bi6024512.
  • Mall T, Gupta M, Dhadialla TS, Rodrigo S. Overview of biotechnology-derived herbicide tolerance and insect resistance traits in plant agriculture. Transgenic Plants: methods and protocols. 2019;313–42.
  • de Mello EJ, Pinheiro AC. proposta para liberação comercial do eucalipto 751k032. In: CIBio Suzano S.A. (FuturaGene –Divisão de Biotecnologia) CQB 0325/11. Brazil: Itapetininga-SP; 2021.
  • dos Santos CF, Ramos JD, de Carvalho FG, Dorneles AL, Menezes TR, Pinheiro AC, Blochtein B. Survivorship and food consumption of immatures and adults of Apis mellifera and Scaptotrigona bipunctata exposed to genetically modified eucalyptus pollen. Transgenic Res. 2023;32(3):1–13. doi:10.1007/s11248-023-00343-z.
  • OECD. Consensus document on general information concerning the genes and their enzymes that confer tolerance of glyphosate herbicide. Series on Harmonization of Regulatory Oversight in Biotechnology No. 10. 1999.
  • ILSI RF. A review of the food and feed safety of the EPSPS protein. Fonte. 2016. (Dezembro de. doi:10.13140/RG.2.2.15073.10081.
  • EFSA (2007). Statement on the safe use of the nptII antibiotic resistance marker gene in genetically modified plants by the scientific panel on genetically modified organisms (GMO). https://efsa.onlinelibrary.wiley.com/doi/epdf/10.2903/j.efsa.2007.742
  • Brown RD. Funnel for extraction of leaf litter organisms. Ann Entomol Soc Am. 1973;66(2):485–86. doi:10.1093/aesa/66.2.485.
  • Besuchet C, Burckhardt DH, Löbl I. The” Winkler/Moczarski“eclector as an efficient extractor for fungus and litter Coleoptera. The Coleopterists’ Bulletin. 1987;392–94.
  • Sabu TK, Shiju RT, Vinod KV, Nithya S. A comparison of the pitfall trap, Winkler extractor and Berlese funnel for sampling ground-dwelling arthropods in tropical montane cloud forests. J Insect Sci. 2011;11(28):1–19. doi:10.1673/031.011.0128.
  • Amplicon PCR. 16s metagenomic sequencing library preparation. San Diego, CA, USA: Illumina; 2013.
  • Heeger F, Wurzbacher C, Bourne EC, Mazzoni CJ, Monaghan MT. Combining the 5.8 S and ITS2 to improve classification of fungi. Methods Ecol Evol. 2019;10(10):1702–11. doi:10.1111/2041-210X.13266.
  • Richa B, Grimm DG. Current challenges and best-practice protocols for microbiome analysis. Brief Bioinform. 2021;22(1):178–93. doi:10.1093/bib/bbz155.
  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costello EK, Knight R, Peña AG, Goodrich JK, Gordon JI. QIIME allows analysis of high-throughput community sequencing data. Nat Methods. 2010;7(5):335–36. doi:10.1038/nmeth.f.303.
  • Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Glöckner FO, Glöckner FO. The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Research. 2012;41(D1):D590–D96. doi:10.1093/nar/gks1219.
  • Hammer Ø, Harper DAT, Ryan PD. Paleontological statistics software package for education and data analysis. Paleontologia Electronica. 2001;4:1–9.
  • Podani J, Miklós I. Resemblance coefficients and the horseshoe effect in principal coordinates analysis. Ecology. 2002;83(12):3331–43. doi:10.1890/0012-9658(2002)083[3331:RCATHE]2.0.CO;2.
  • Alimentarius C. Foods derived from modern biotechnology. Rome: Joint FAO/WHO Food Standards Programme; 2009.
  • Pearson WR. Rapid and sensitive sequence comparison with FASTP and FASTA. Methods Enzymol. 1990;183:63–98.
  • Altschul SF, Madden TL, Schäffer AA, Zhang J, Zhang Z, Miller W, Lipman DJ. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 1997;25(17):3389–402. doi:10.1093/nar/25.17.3389.
  • Pearson WR. Flexible sequence similarity searching with the FASTA3 program package. Totowa, NJ: Humana Press; 2000.
  • Fu TJ, Abbott UR, Hatzos C. Digestibility of food allergens and nonallergenic proteins in simulated gastric fluid and simulated intestinal fluid a comparative study. J Agr Food Chem. 2002;50(24):7154–60. doi:10.1021/jf020599h.
  • In TS. The United States pharmacopoeia 23, the national formulary 18. In: United States pharmacopoeial convention. Rockville, MD; 1955.
  • Thomas K, Aalbers M, Bannon GA, Bartels M, Dearman RJ, Esdaile DJ, Fu TJ, Glatt CM, Hadfield N, Hatzos C, et al. A multi-laboratory evaluation of a common in vitro pepsin digestion assay protocol used in assessing the safety of novel proteins. Regul Toxicol Pharmacol. 2004;39(2):87–98. doi:10.1016/j.yrtph.2003.11.003.
  • Harrison LA, Bailey MR, Naylor MW, Ream JE, Hammond BG, Nida DL, Burnette BL, Nickson TE, Mitsky TA, Taylor ML, et al. The expressed protein in glyphosate-tolerant soybean, 5-enolypyruvylshikimate-3-phosphate synthase from Agrobacterium sp. strain CP4, is rapidly digested in vitro and is not toxic to acutely gavaged mice. J Nutr. 1996;126(3):728–40. doi:10.1093/jn/126.3.728.
  • Board of Trustees. Simulated gastric fluid and simulated intestinal fluid. In: The United States pharmacopeia 23, the national formulary 18. Rockville, MD: United States Pharmacopeial Convention, Inc; 1995. p. 2053.
  • Marblestone JG, Edavettal SC, Lim Y, Lim P, Zuo XUN, Butt TR. Comparison of SUMO fusion technology with traditional gene fusion systems: enhanced expression and solubility with SUMO. Protein Science. 2006;15(1):182–89. doi:10.1110/ps.051812706.
  • Ladics GS. Current codex guidelines for assessment of potential protein allergenicity. Food Chem Toxicol. 2008;46(10):S20–S23. doi:10.1016/j.fct.2008.07.021.
  • Fuchs RL, Ream JE, Hammond BG, Naylor MW, Leimgruber RM, Berberich SA. Safety assessment of the neomycin phosphotransferase II (NPTII) protein. Bio/Technology. 1993;11(12):1543–47. doi:10.1038/nbt1293-1543.
  • OECD. Safety assessment of transgenic organisms in the environment, Volume 6: oECD consensus documents. In: Harmonisation of regulatory oversight in biotechnology. OECD Publishing; 2016. Paris. doi:10.1787/9789264253421-en.
  • Chinnadurai P, Stojšin D, Liu K, Frierdich GE, Glenn KC, Geng T, Schapaugh A, Huang K, Deffenbaugh AE, Liu ZL, et al. Variability of CP4 EPSPS expression in genetically engineered soybean (Glycine max L. Merrill). Transgenic Res. 2018;27(6):511–24. doi:10.1007/s11248-018-0092-z.
  • Naegeli H, Bresson JL, Dalmay T, Dewhurst IC, Epstein MM, Firbank LG, Guerche P, Hejatko J, Moreno FJ, Mullins E. EFSA Panel on Genetically Modified Organisms (GMO). Assessment of genetically modified maize MON 87427 3 MON 87460 3 MON 89034 3 MIR162 3 NK603 and subcombinations, for food and feed uses, under Regulation (EC) No 1829/2003 (application EFSA-GMO-NL-2016-134). EFSA J. 2019;17 8 e05774 .
  • Paoletti MG. Invertebrate biodiversity as bioindicators of sustainable landscapes: practical use of invertebrates to assess sustainable land use. Amsterdam, The Netherlands: Elsevier; 2012.
  • Zhang H, Luo G, Wang Y, Fei J, Xiangmin R, Peng J, Tian C, Zhang Y. Crop rotation-driven change in physicochemical properties regulates microbial diversity, dominant components, and community complexity in paddy soils. Agr Ecosyst Environ. 2023;343:108278. doi:10.1016/j.agee.2022.108278.