Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
1,666
Views
0
CrossRef citations to date
0
Altmetric
Research Article

No obvious unintended effects was found in gene editing rice through transcriptional and proteomic analysis

, , , , &
Pages 1-16 | Received 04 Apr 2023, Accepted 21 Jun 2023, Published online: 30 Jun 2023

References

  • Huang S, Yan YL, Su F, Huang XL, Xia DD, XX J, YH D, Lv P, Chen FL, Lv YW. Research progress in gene editing technology. Front Biosci. 2021;26(10):916–27. doi:10.52586/4997.
  • Lemmon ZH, Reem NT, Dalrymple J, Soyk S, Swartwood KE, Rodriguez-Leal D, Eck JV, Lippman ZB. Rapid improvement of domestication traits in an orphan crop by genome editing. Nature Plants. 2018;4(10):766–70. doi:10.1038/s41477-018-0259-x.
  • Xu RF, Yang YC, Qin RY, Li H, Qiu CH, Li L, Wei PC, Yang JB. Rapid improvement of grain weight via highly efficient CRISPR/Cas9-mediated multiplex genome editing in rice. J Genet Genomics. 2016;43(8):529–32. doi:10.1016/j.jgg.2016.07.003.
  • Wang YP, Cheng X, Shan QW, Zhang Y, Liu JX, Gao CX, Qiu JL. Simultaneous editing of three homoeoalleles in hexaploid bread wheat confers heritable resistance to powdery mildew. Nat Biotechnol. 2014;32(9):947–51. doi:10.1038/nbt.2969.
  • Zong Y, Wang YP, Li C, Zhang R, Chen KL, Ran YD, Qiu JL, Wang DW, Gao CX. Precise base editing in rice, wheat and maize with a Cas9-cytidine deaminase fusion. Nat Biotechnol. 2017;35(5):438–40. doi:10.1038/nbt.3811.
  • Schaefer KA, Wu WH, Colgan DF, Tsang SH, Bassuk AG, Mahajan VB. Unexpected mutations after CRISPR-Cas9 editing in vivo. Nat Methods. 2017;14(6):547–48. doi:10.1038/nmeth.4293.
  • Qin J, Gu F, Liu D, Yin C, Zhao S, Chen H, Zhang J, Yang C, Zhan X, Zhang M. Proteomic analysis of elite soybean Jidou17 and its parents using Itraq-based quantitative approaches. Proteome Sci. 2013;11(1):12. doi:10.1186/1477-5956-11-12.
  • Wang X, Zhang X, Yang J, Liu X, Song Y, Wang Z. Genetic variation assessment of stacked-trait transgenic maize via conventional breeding. BMC Plant Biol. 2019;19(1):346. doi:10.1186/s12870-019-1956-y.
  • Ren Y, Lv J, Wang H, Li L, Peng Y, Qu LJ. A comparative proteomics approach to detect unintended effects in transgenic Arabidopsis. J Genet Genomics. 2009;36(10):629–39. doi:10.1016/S1673-8527(08)60155-1.
  • Bedair M, Glenn KC. Evaluation of the use of untargeted metabolomics in the safety assessment of genetically modified crops. Metabolomics. 2020;16(10). doi:10.1007/s11306-020-01733-8.
  • Ricroch AE, Berge JB, Kuntz M. Evaluation of genetically engineered crops using transcriptomic, proteomic, and metabolomic profiling techniques. Plant Physiol. 2011;155(4):1752–61. doi:10.1104/pp.111.173609.
  • Cullot G, Boutin J, Toutain J, Prat F, Pennamen P, Rooryck C, Teichmann M, Rousseau E, Lamrissi-Garcia I, Guyonnet-Duperat V, et al. 2019. CRISPR-Cas9 genome editing induces megabase-scale chromosomal truncations. Nat Commun. 2019;10(1):1136. doi:10.1038/s41467-019-09006-2.
  • Zuo E, Sun Y, Wei W, Yuan T, Ying W, Sun H, Yuan L, Steinmetz LM, Li Y, Yang H. Cytosine base editor generates substantial off-target single-nucleotide variants in mouse embryos. Science. 2019 Apr 19;364(6437):289–92. doi:10.1126/science.aav9973. Epub 2019 Feb 28. PMID: 30819928; PMCID: PMC7301308.
  • Jin S, Zong Y, Gao Q, Zhu ZX, Wang YP, Qin P, Liang CZ, Wang DW, Qiu JL, Zhang F, et al. Cytosine, but not adenine, base editors induce genome-wide off-target mutations in rice. Science. 2019;364(6437):292–95. doi:10.1126/science.aaw7166.
  • Tuladhar R, Yeu Y, Piazza JT, Tan Z, Clemenceau JR, Wu X, Barrett Q, Herbert J, Mathews DH, Kim J. CRISPR-Cas9-based mutagenesis frequently provokes on-target mRNA misregulation. Nat Commun. 2019;10(1):4056. doi:10.1038/s41467-019-12028-5.
  • Li J, Manghwar H, Sun L, Wang P, Wang G, Sheng H, Zhang J, Liu H, Qin L, Rui H, et al. Whole genome sequencing reveals rare off-target mutations and considerable inherent genetic or/and somaclonal variations in CRISPR/Cas9-edited cotton plants. Plant Biotechnol J. 2019 May;17(5):858–68. Epub 2018 Oct 30. PMID: 30291759; PMCID: PMC6587709. doi:10.1111/pbi.13020.
  • Wang Y, Peng XL, Yang ZJ, Zhao WW, Xu WT, Hao JR, Wu WH, Shen XL, Luo YB, Huang KL. iTRAQ mitoproteome analysis reveals mechanisms of programmed cell death in Arabidopsis thaliana induced by ochratoxin a. Toxins. 2017;9(5):167. doi:10.3390/toxins9050167.
  • Lu HP. Expression of cytochrome P450 CYP81A6 in rice: tissue specificity, protein subcellular localization, and response to herbicide application. J Zhejiang Univ Sci B. 2015;16(2):113–22. 2015. doi:10.1631/jzus.b1400168.
  • Pan G, Zhang X, Liu K, Zhang J, Wu X, Zhu J, Tu J. Map-based cloning of a novel rice cytochrome P450 gene CYP81A6 that confers resistance to two different classes of herbicides. Plant Mol Biol. 2006;61(6):933–43. doi:10.1007/s11103-006-0058-z.
  • Kim D, Langmead B, Salzberg SL. HISAT: a fast spliced aligner with low memory requirements. Nat Methods. 2015;12(4):357–60. doi:10.1038/nmeth.3317.
  • Pertea M, Pertea GM, Antonescu CM, Chang T-C, Mendell JT, Salzberg SL. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads. Nat Biotechnol. 2015;33(3):290–95. doi:10.1038/nbt.3122.
  • Cingolani P, Platts A, L WL, Coon M, Nguyen T, Wang L, Land SJ, Lu X, Ruden DM. A program for annotating and predicting the effects of single nucleotide polymorphisms, SnpEff: sNPs in the genome of Drosophila melanogaster strain w1118; iso-2; iso-3. Fly. 2012;6(2):80–92. doi:10.4161/fly.19695.
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15(12):550. doi:10.1186/s13059-014-0550-8.
  • Deng YY, Li JQ, Wu SF, Zhu YP. Integrated nr database in protein annotation system and its localization. Comput Eng. 2006;32(5):71–74.
  • Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, et al. Gene ontology: tool for the unification of biology. Nat Genet. 2000;25(1):25–29. doi:10.1038/75556.
  • Tatusov RL, Galperin MY, Natale DA. The COG database: a tool for genome scale analysis of protein functions and evolution. Nucleic Acids Res. 2000;28(1):33–36. doi:10.1093/nar/28.1.33.
  • Finn RD, Bateman A, Clements J, Coggill P, Eberhardt RY, Eddy SR, Heger A, Hetherington K, Holm L, Mistry J, et al. Pfam: the protein families database. Nucleic Acids Res. 2013;42(D1):D222–D30. doi:10.1093/nar/gkt1223.
  • Kanehisa M, Goto S, Kawashima S, Okuno Y. The KEGG resource for deciphering the genome. Nucleic Acids Res. 2004;32(90001):D277–D80. doi:10.1093/nar/gkh063.
  • Franceschini A, Szklarczyk D, Frankild S, Kuhn M, Simonovic M, Roth A, Lin J, Minguez P, Bork P, von Mering C, et al. STRING v9. 1: protein-protein interaction networks, with increased coverage and integration. Nucleic Acids Res. 2013;41(D1):D808–D15. doi:10.1093/nar/gks1094.
  • Apweiler R, Bairoch A, Wu CH. UniProt: the universal protein knowledgebase. Nucleic Acids Res. 2004;32(90001):D115–D19. doi:10.1093/nar/gkh131.
  • Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B, Ideker T. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res. 2003;13(11):2498–504. doi:10.1101/gr.1239303.
  • Iyer V, Shen B, Zhang W, Hodgkins A, Skarnes WC, Huang X, Skarnes WC. Off-target mutations are rare in Cas9-modified mice. Nat Methods. 2015;12(6):479. doi:10.1038/nmeth.3408.
  • Veres A, Gosis B, Ding Q, Collins R, Ragavendran A, Brand H, Erdin S, Cowan CA, Talkowski M, Musunuru K. Low incidence of off-target mutations in individual CRISPR-Cas9 and TALEN targeted human stem cell clones detected by whole-genome sequencing. Cell Stem Cell. 2014;15(1):27–30. doi:10.1016/j.stem.2014.04.020.
  • Anderson KR, Haeussler M, Watanabe C, Janakiraman V, Lund J, Modrusan Z, Stinson J, Bei Q, Buechler A, Yu C, et al. CRISPR off-target analysis in genetically engineered rats and mice. Nat Methods. 2018 Jul;15(7):512–14. Epub 2018 May 21. PMID: 29786090; PMCID: PMC6558654. doi:10.1038/s41592-018-0011-5.