Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
1,860
Views
0
CrossRef citations to date
0
Altmetric
Review

Modification of Fatty Acid Profile and Oil Contents Using Gene Editing in Oilseed Crops for a Changing Climate

, &
Pages 1-12 | Received 08 Jun 2023, Accepted 27 Jul 2023, Published online: 08 Aug 2023

References

  • Rauf S, Jamil N, Tariq SA, Khan M, Kausar M, Kaya Y. Progress in modification of sunflower oil to expand its industrial value. J Sci Food Agric. 2017;97(7):1997–2006. doi: 10.1002/jsfa.8214.
  • Park ME, Kim HU. Applications and prospects of genome editing in plant fatty acid and triacylglycerol biosynthesis. Front Plant Sci. 2022;13:969844. doi:10.3389/fpls.2022.969844.
  • Karavolias NG, Horner W, Abugu MN, Evanega SN. Application of gene editing for climate change in agriculture. Front Sustain Food Syst. 2021;5:685801. doi:10.3389/fsufs.2021.685801.
  • Subedi U, Jayawardhane KN, Pan X, Ozga J, Chen G, Foroud NA, Singer SD. The potential of genome editing for improving seed oil content and fatty acid composition in oilseed crops. Lipids. 2020;55(5):495–512. doi: 10.1002/lipd.12249.
  • Pustovoit VS. Breeding and seed growing of the sunflower. In short report on scientific research for the year 1952. Krasnodar, Russia: USSR Oil Plants Institute; 1953. pp. 12–21.
  • Downey RK. Rapeseed to canola: rags to riches. In: Eaglesham A Hardy R, editors. Agricultural biotechnology: economic growth through new products, partnerships and workforce development. Ithaca, New York: National Agricultural Biotechnology Council; 2006. pp. 67–76.
  • Lakhssassi N, Lopes-Caitar VS, Knizia D, Cullen MA, Badad O, El Baze A, Meksem K, Embaby MG, Meksem J, Lakhssassi A. TILLING-by-sequencing+ reveals the role of novel fatty acid desaturases (GmFAD2-2s) in increasing soybean seed oleic acid content. Cells. 2021;10(5):1245. doi: 10.3390/cells10051245.
  • Chakrabarti S, Chatterjee C, Mandal A. Improving nutrient value of crops: applications of RNAi in targeting plant metabolic pathways. In: Tang G, Teotia S, Tang X Singh D, editors. RNA-Based technologies for functional genomics in plants. Cham:Springer International Publishing; 2021. pp. 199–225. doi:10.1007/978-3-030-64994-4_10.
  • Subedi U, Ozga JA, Chen G, Foroud NA, Singer SD. Crispr/cas-mediated genome editing for the improvement of oilseed crop productivity. Crit Rev Plant Sci. 2020;39(3):195–221. doi: 10.1080/07352689.2020.1782568.
  • Vaikuntapu PR, Kumar VD. Applications and challenges of harnessing genome editing in oilseed crops. J Plant Biochem Biotech. 2023. doi:10.1007/s13562-022-00821-1.
  • Razzaq MK, Aleem M, Mansoor S, Khan MA, Rauf S, Iqbal S, Siddique KH. Omics and CRISPR-Cas9 approaches for molecular insight, functional gene analysis, and stress tolerance development in crops. Int J Mol Sci. 2021;22(3):1292. doi: 10.3390/ijms22031292.
  • Waltz E. With a free pass, CRISPR-edited plants reach market in record time. Nat Biotech. 2018;36(1):6–7. doi: 10.1038/nbt0118-6b.
  • Rauf S, Ortiz R, Shehzad M, Haider W, Ahmed I. The exploitation of sunflower (Helianthus annuus L.) seed and other parts for human nutrition, medicine and the industry. Helia. 2020;43(73):167–84. doi: 10.1515/helia-2020-0019.
  • Braatz J, Harloff HJ, Mascher M, Stein N, Himmelbach A, Jung C. CRISPR-Cas9 targeted mutagenesis leads to simultaneous modification of different homoeologous gene copies in polyploid oilseed rape (Brassica napus). Plant Physiol. 2017;174(2):935–42. doi: 10.1104/pp.17.00426.
  • Wu J, Liu H, Ren S, Li P, Li X, Lin L, Sun Q, Zhang L, Lin C, Wang Y. Generating an oilseed rape mutant with non-abscising floral organs using CRISPR/Cas9 technology. Plant Physiol. 2022;190(3):1562–65. doi: 10.1093/plphys/kiac364.
  • Naeem M, Majeed S, Hoque MZ, Ahmad I. Latest developed strategies to minimize the off-target effects in CRISPR-Cas-mediated genome editing. Cells. 2020;9(7):1608. doi: 10.3390/cells9071608.
  • Xu P, Cao S, Hu K, Wang X, Huang W, Wang G, Lv Z, Liu Z, Wen J, Yi B, et al. Trilocular phenotype in Brassica juncea L. resulted from interruption of CLAVATA1 gene homologue (BjMc1) transcription. Sci Rep. 2017;7(1):3498. doi: 10.1038/s41598-017-03755-0.
  • Yang Y, Zhu K, Li H, Han S, Meng Q, Khan SU, Fan C, Xie K, Zhou Y. Precise editing of CLAVATA genes in Brassica napus L. regulates multilocular silique development. Plant Biotechnol J. 2018;16(7):1322–35. doi: 10.1111/pbi.12872.
  • Shah S, Karunarathna NL, Jung C, Emrani N. An APETALA1 ortholog affects plant architecture and seed yield component in oilseed rape (Brassica napus L.). BMC Plant Biol. 2018;18(1):380. doi: 10.1186/s12870-018-1606-9.
  • Zaman QU, Wen C, Yuqin S, Mengyu H, Desheng M, Jacqueline B, Baohong Z, Chao L, Qiong H. Characterization of SHATTERPROOF homoeologs and CRISPR-Cas9-mediated genome editing enhances pod-shattering resistance in Brassica napus L. Crispr J. 2021;4(3):360–70. doi: 10.1089/crispr.2020.0129.
  • Wang Z, Wan L, Xin Q, Zhang X, Song Y, Wang P, Yang G, Fan Z, Yang G. Optimizing glyphosate tolerance in rapeseed by CRISPR/Cas9-based geminiviral donor DNA replicon system with Csy4-based single-guide RNA processing. J Exp Bot. 2021;72(13):4796–808. doi: 10.1093/jxb/erab167.
  • Zhang Z, Wang J, Kuang H, Hou Z, Gong P, Bai M, Guan Y, Yao X, Song S, Yan L. Elimination of an unfavorable allele conferring pod shattering in an elite soybean cultivar by CRISPR/Cas9. Abiotech. 2022;3(2):110–14. doi: 10.1007/s42994-022-00071-8.
  • Sashidhar N, Harloff HJ, Potgieter L, Jung C. Gene editing of three BnITPK genes in tetraploid oilseed rape leads to significant reduction of phytic acid in seeds. Plant Biotechol J. 2020;18(11):2241–50. doi: 10.1111/pbi.13380.
  • Pröbsting M, Schenke D, Hossain R, Häder C, Thurau T, Wighardt L, Cai D, Zhou Z, Ye W, Rietz S. Loss of function of Crt1a (calreticulin) reduces plant susceptibility to Verticillium longisporum in both Arabidopsis thaliana and oilseed rape (Brassica napus). Plant Biotechol J. 2020;18(11):2328–44. doi: 10.1111/pbi.13394.
  • Wang L, Sun S, Wu T, Liu L, Sun X, Cai Y, Han T, Jia H, Yuan S, Chen L. Natural variation and CRISPR/Cas9‐mediated mutation in GmPRR37 affect photoperiodic flowering and contribute to regional adaptation of soybean. Plant Biotechol J. 2020;18(9):1869–81. doi: 10.1111/pbi.13346.
  • Zhong X, Hong W, Shu Y, Li J, Liu L, Chen X, Tang G, Zhou W, Tang G. CRISPR/Cas9 mediated gene-editing of GmHdz4 transcription factor enhances drought tolerance in soybean (Glycine max [L.] Merr.). Front Plant Sci. 2022;13:988505. doi:10.3389/fpls.2022.988505.
  • Han L, Haslam RP, Silvestre S, Lu C, Napier JA. Enhancing the accumulation of eicosapentaenoic acid and docosahexaenoic acid in transgenic Camelina through the CRISPR‐Cas9 inactivation of the competing FAE1 pathway. Plant Biotechnol J. 2022;20(8):1444–46. doi: 10.1111/pbi.13876.
  • Cai Y, Wang L, Chen L, Wu T, Liu L, Sun S, Hou W, Yao W, Jiang B, Yuan S. Mutagenesis of GmFT2a and GmFT5a mediated by CRISPR/Cas9 contributes for expanding the regional adaptability of soybean. Plant Biotechil J. 2020;18(1):298–309. doi: 10.1111/pbi.13199.
  • Wang Y, Xu C, Sun J, Dong L, Li M, Liu Y, Zhao L, Zhang X, Li D, Sun J. GmRAV confers ecological adaptation through photoperiod control of flowering time and maturity in soybean. Plant Physiol. 2021;187(1):361–77. doi: 10.1093/plphys/kiab255.
  • Tian Y, Liu X, Fan C, Li T, Qin H, Li X, Chen K, Zheng Y, Chen F, Xu Y. Enhancement of tobacco (Nicotiana tabacum L.) seed lipid content for biodiesel production by CRISPR-Cas9-mediated knockout of NtAn1. Front Plant Sci. 2021;11:599474. doi:10.3389/fpls.2020.599474.
  • Zhai Y, Yu K, Cai S, Hu L, Amoo O, Xu L, Zhou Y, Ma B, Jiao Y, Zhang C. Targeted mutagenesis of BnTT8 homologs controls yellow seed coat development for effective oil production in Brassica napus L. Plant Biotechol J. 2020;18(5):1153–68. doi: 10.1111/pbi.13281.
  • Zhang K, Nie L, Cheng Q, Yin Y, Chen K, Qi F, Li M, Liu H, Zhao W, Wang B. Effective editing for lysophosphatidic acid acyltransferase 2/5 in allotetraploid rapeseed (Brassica napus L.) using CRISPR-Cas9 system. Biotechnol Biofuel. 2019;12(1):1–18. doi: 10.1186/s13068-019-1567-8.
  • Dewatha Pedige NLK. Functional analysis and mutagenesis of GDSL lipase genes for breeding oilseed rape (Brassica napus) with higher oil content [ PhD thesis. Univ]. Kiel, Kiel, Germany; 2019.
  • Wang N, Tao B, Mai J, Guo Y, Li R, Chen R, Shen J, Wen J, Yi B, Tu J. Kinase CIPK9 integrates glucose and abscisic acid signaling to regulate seed oil metabolism in rapeseed. Plant Physiol. 2023;191(3):1836–56. doi: 10.1093/plphys/kiac569.
  • Marchiafava D. Increasing total lipid content in pennycress (Thlaspi arvense L.) utilizing CRISPR-Cas9 and transgenic approaches [ PhD thesis]. Normal, Illinois: Illinois State University; 2021.
  • Wang J, Kuang H, Zhang Z, Yang Y, Yan L, Zhang M, Guan Y, Guan Y. Generation of seed lipoxygenase-free soybean using CRISPR-Cas9. Crop J. 2020;8(3):432–39. doi: 10.1016/j.cj.2019.08.008.
  • Zheng M, Zhang L, Tang M, Liu J, Liu H, Yang H, Fan S, Terzaghi W, Wang H, Hua W. Knockout of two Bna MAX1 homologs by CRISPR/Cas9-targeted mutagenesis improves plant architecture and increases yield in rapeseed (Brassica napus L.). Plant Biotechnol J. 2020;18(3):644–54. doi: 10.1111/pbi.13228.
  • Cai Z, Xian P, Cheng Y, Zhong Y, Yang Y, Zhou Q, Ge L, Ma Q, Nian H, Ge L. MOTHER‐OF‐FT‐AND‐TFL1 regulates the seed oil and protein content in soybean. New Phytol. 2023;229(3):905–19. doi: 10.1111/nph.18792.
  • Thakur T, Sinha K, Kaur T, Kapoor R, Kumar G, Bhunia RK, Salvi P. Efficient genetic transformation of rice for CRISPR/Cas9 mediated genome-editing and stable overexpression studies: a case study on rice lipase 1 and galactinol synthase encoding genes. Agronomy. 2022;12(1):179. doi: 10.3390/agronomy12010179.
  • Sandgrind S, Li X, Ivarson E, Wang ES, Guan R, Kanagarajan S, Zhu LH. Improved fatty acid composition of field cress (lepidium campestre) by CRISPR/Cas9-mediated genome editing. Front Plant Sci. 2023;14:1076704. doi:10.3389/fpls.2023.1076704.
  • Bollinedi H, Singh AK, Singh N, Bhowmick PK, Bhowmick PK, KK V, M N, RK E. Genetic and genomic approaches to address rapid rancidity of rice bran. Crit Rev Food Sci Nutr. 2021;61(1):75–84. doi: 10.1080/10408398.2020.1718598.
  • Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem. 2018;131:58–62. doi:10.1016/j.plaphy.2018.04.033.
  • Karunarathna NL, Wang H, Harloff HJ, Jiang L, Jung C. Elevating seed oil content in a polyploid crop by induced mutations in SEED FATTY ACID REDUCER genes. Plant Biotechnol J. 2020;18(11):2251–66. doi: 10.1111/pbi.13381.
  • Aznar-Moreno JA, Durrett TP. Simultaneous targeting of multiple gene homeologs to alter seed oil production in Camelina sativa. Plant Cell Physiol. 2017;58(7):1260–67. doi: 10.1093/pcp/pcx058.
  • Tang Y, Huang J, Ji H, Pan L, Hu C, Qiu X, Qiao L, Sui J, Wang J, Qiao L. Identification of AhFatb genes through genome-wide analysis and knockout of AhFatb reduces the content of saturated fatty acids in peanut (arachis hypogaeaL.). Plant Sci. 2022;319:111247. doi:10.1016/j.plantsci.2022.111247.
  • Ma J, Sun S, Whelan J, Shou H. Crispr/cas9-mediated knockout of GmFATB1 significantly reduced the amount of saturated fatty acids in soybean seeds. Int J Mol Sci. 2021;22(8):3877. doi: 10.3390/ijms22083877.
  • Ozseyhan ME, Kang J, Mu X, Lu C. Mutagenesis of the FAE1 genes significantly changes fatty acid composition in seeds of Camelina sativa. Plant Physiol Biochem. 2018;123:1–7. doi:10.1016/j.plaphy.2017.11.021.
  • Liu Y, Du Z, Lin S, Li H, Lu S, Guo L, Tang S. Crispr/cas9-targeted mutagenesis of BnaFAE1 genes confers low-erucic acid in Brassica napus. Front Plant Sci. 2022;13:848723. doi:10.3389/fpls.2022.848723.
  • He M, Ding NZ. Plant unsaturated fatty acids: multiple roles in stress response. Front Plant Sci. 2020;11:562785. doi:10.3389/fpls.2020.562785.
  • Wang W, Pang J, Zhang F, Sun L, Yang L, Siddique KH. Transcriptomic and metabolomics-based analysis of key biological pathways reveals the role of lipid metabolism in response to salt stress in the root system of Brassica napus. Plant Growth Regul. 2022;97(1):127–41. doi: 10.1007/s10725-021-00788-4.
  • Zhang B, Xia P, Yu H, Li W, Chai W, Liang Z. Based on the whole genome clarified the evolution and expression process of fatty acid desaturase genes in three soybeans. Int J Biol Macromol. 2021;182:1966–80. doi:10.1016/j.ijbiomac.2021.05.161.
  • Bhunia RK, Menard GN, Eastmond PJ. A native promoter–gene fusion created by CRISPR/Cas9‐mediated genomic deletion offers a transgene‐free method to drive oil accumulation in leaves. FEBS Lett. 2022;596(15):1865–70. doi: 10.1002/1873-3468.14365.
  • Singh AK, Raina SK, Kumar M, Aher L, Ratnaparkhe MB, Rane J, Kachroo A. Modulation of GmFAD3 expression alters abiotic stress responses in soybean. Plant Mol Biol. 2022;110(1–2):199–218. doi: 10.1007/s11103-022-01295-4.
  • Hernández ML, Padilla MN, Sicardo MD, Mancha M, Martínez-Rivas JM. Effect of different environmental stresses on the expression of oleate desaturase genes and fatty acid composition in olive fruit. Phytochemistry. 2011;72(2–3):178–87. doi: 10.1016/j.phytochem.2010.11.026.
  • Xu C, Xia C, Xia Z, Zhou X, Huang J, Huang Z, Liu Y, Jiang Y, Casteel S, Zhang C. Physiological and transcriptomic responses of reproductive stage soybean to drought stress. Plant Cell Rep. 2018;37(12):1611–24. doi: 10.1007/s00299-018-2332-3.
  • Zhang L, Li T, Wang Y, Zhang Y, Dong YS. FvC5SD overexpression enhances drought tolerance in soybean by reactive oxygen species scavenging and modulating stress-responsive gene expression. Plant Cell Rep. 2019;38(9):1039–51. doi: 10.1007/s00299-019-02424-y.
  • Manan S, Zhao J. Role of glycine max ABSCISIC ACID INSENSITIVE 3 (GmABI3) in lipid biosynthesis and stress tolerance in soybean. Funct Plant Biol. 2020;48(2):171–79. doi: 10.1071/FP19260.
  • Wei W, Liang DW, Bian XH, Shen M, Xiao JH, Zhang WK, Zhang JS, Lin Q, Lv J, Chen X. GmWRKY54 improves drought tolerance through activating genes in abscisic acid and Ca2+ signaling pathways in transgenic soybean. Plant J. 2019;100(2):384–98. doi: 10.1111/tpj.14449.
  • Cai G, Liu B, Zhou Y, Gao H, Xue J, Ji C, Zhang R, Jia X, Li R. Functional characterization of transcription factor WIN1 genes associated with lipid biosynthesis and stress tolerance in soybean (glycine max). Environ Exp Bot. 2022;200:104916. doi:10.1016/j.envexpbot.2022.104916.
  • Liu M, Li D, Wang Z, Meng F, Li Y, Wu X, Teng W, Han Y, Li W. Transgenic expression of ThIPK2 gene in soybean improves stress tolerance, oleic acid content and seed size. Plant Cell Tissue Organ Cult. 2012;111(3):277–89. doi: 10.1007/s11240-012-0192-z.
  • Xu L, Zeng W, Li J, Liu H, Yan G, Si P, Yang C, Shi Y, He Q, Zhou W. Characteristics of membrane-bound fatty acid desaturase (FAD) genes in Brassica napus L. and their expressions under different cadmium and salinity stresses. Environ Exp Bot. 2019;162:144–56. doi:10.1016/j.envexpbot.2019.02.016.
  • Lee KR, Jeon I, Yu H, Kim SG, Kim HS, Ahn SJ, Kim HU, Lee S-K, Kim HU. Increasing monounsaturated fatty acid contents in hexaploid Camelina sativa seed oil by FAD2 gene knockout using CRISPR-Cas9. Front Plant Sci. 2021;12:702930. doi:10.3389/fpls.2021.702930.
  • Jiang WZ, Henry IM, Lynagh PG, Comai L, Cahoon EB, Weeks DP. Significant enhancement of fatty acid composition in seeds of the allohexaploid, Camelina sativa, using CRISPR/Cas9 gene editing. Plant Biotechol J. 2017;15(5):648–57. doi: 10.1111/pbi.12663.
  • Chen Y, Fu M, Li H, Wang L, Liu R, Liu Z, Jin S, Jin S. High-oleic acid content, nontransgenic allotetraploid cotton (Gossypium hirsutum L.) generated by knockout of GhFAD2 genes with CRISPR/Cas9 system. Plant Biotechol J. 2021;19(3):424–26. doi: 10.1111/pbi.13507.
  • Jarvis BA, Romsdahl TB, McGinn MG, Nazarenus TJ, Cahoon EB, Chapman K, Sedbrook D. Crispr/cas9-induced fad2 and rod1 mutations stacked with fae1 confer high oleic acid seed oil in pennycress (Thlaspi arvense L.). Front Plant Sci. 2021;12:652319. doi:10.3389/fpls.2021.652319.
  • Neelakandan AK, Wright DA, Traore SM, Chen X, Spalding MH, He G. CRISPR/Cas9 based site-specific modification of FAD2 cis-regulatory motifs in peanut (Arachis hypogaea L). Front Genet. 2022;13:849961. doi:10.3389/fgene.2022.849961.
  • Abe K, Araki E, Suzuki Y, Toki S, Saika H. Production of high oleic/low linoleic rice by genome editing. Plant Physiol Biochem. 2018;131:58–62. doi:10.1016/j.plaphy.2018.04.033.
  • Okuzaki A, Ogawa T, Koizuka C, Kaneko K, Inaba M, Imamura J, Koizuka N. Crispr/cas9-mediated genome editing of the fatty acid desaturase 2 gene in Brassica napus. Plant Physiol Biochem. 2018;131:63–69. doi:10.1016/j.plaphy.2018.04.025.
  • Huang H, Cui T, Zhang L, Yang Q, Yang Y, Xie K, Zhou Y, Zhou Y. Modifications of fatty acid profile through targeted mutation at BnaFAD2 gene with CRISPR/Cas9-mediated gene editing in Brassica napus. Theoret Appl Genet. 2020;133(8):2401–11. doi: 10.1007/s00122-020-03607-y.
  • Shi J, Ni X, Huang J, Fu Y, Wang T, Yu H, Zhang Y. Crispr/cas9-mediated gene editing of BnFAD2 and BnFAE1 modifies fatty acid profiles in brassica napus. Genes. 2022;13(10):1681. doi: 10.3390/genes13101681.
  • Liu H, Lin B, Ren Y, Hao P, Huang L, Xue B, Jiang L, Zhu Y, Hua S. Crispr/cas9-mediated editing of double loci of BnFAD2 increased the seed oleic acid content of rapeseed (Brassica napus L.). Front Plant Sci. 2022;13:1034215. doi:10.3389/fpls.2022.1034215.
  • Do PT, Nguyen CX, Bui HT, Tran LT, Stacey G, Gillman JD, Stacey MG, Stacey MG. Demonstration of highly efficient dual gRNA CRISPR/Cas9 editing of the homeologous GmFAD2–1A and GmFAD2–1B genes to yield a high oleic, low linoleic and α-linolenic acid phenotype in soybean. BMC Plant Biol. 2019;19(1). doi:10.1186/s12870-019-1906-8.
  • Fu M, Chen L, Cai Y, Su Q, Chen Y, Hou W. Crispr/cas9-Mediated mutagenesis of GmFAD2-1A and/or GmFAD2-1B to create high oleic acid soybean. Agronomy. 2022;12(12):3218. doi: 10.3390/agronomy12123218.
  • Yuan M, Zhu J, Gong L, He L, Lee C, Han S, He C, He G. Mutagenesis of FAD2 genes in peanut with CRISPR/Cas9 based gene editing. BMC Biotechnol. 2019;19(1):24. doi: 10.1186/s12896-019-0516-8.
  • Bahariah B, Masani MYA, Fizree MPM, Rasid OA, Parveez GKA. Multiplex CRISPR/Cas9 gene-editing platform in oil palm targeting mutations in EgFAD2 and EgPAT genes. J Genet Engi And Biotech. 2023;21(1):3. doi: 10.1186/s43141-022-00459-5.
  • Assou J, Zhang D, Roth KD, Steinke S, Hust M, Reinard T, Winkelmann T, Boch J. Removing the major allergen Bra j I from brown mustard (Brassica juncea) by CRISPR/Cas9. Plant J. 2022;109(3):649–63. doi: 10.1111/tpj.15584.
  • Zhang H, Shi Y, Sun M, Hu X, Hao M, Shu Y, Mei D, Hu Q, Li C, Mei D. Functional differentiation of BnVTE4 gene homologous copies in α-tocopherol biosynthesis revealed by CRISPR/Cas9 editing. Front Plant Sci. 2022;13:850924. doi:10.3389/fpls.2022.850924.
  • Valbuena MV, Calerón MV, Martínez-Force E, Garcés R, Liñán JS. CRISPR/Cas9 mediated genome edition in castor plant based on golden gate assembly. Biosaia. 2022:11. https://www.upo.es/revistas/index.php/biosaia/article/view/6645.
  • Shen B, Schmidt MA, Collet KH, Liu ZB, Coy M, Abbitt S, Herman EM, Frank M, Everard JD, Booth R, et al. Rnai and CRISPR–Cas silencing E3-RING ubiquitin ligase AIP2 enhances soybean seed protein content. J Exper Botan. 2022;73(22):7285–97. doi: 10.1093/jxb/erac376.
  • Lyzenga WJ, Harrington M, Bekkaoui D, Wigness M, Hegedus DD, Rozwadowski KL. CRISPR/Cas9 editing of three CRUCIFERIN C homoeologues alters the seed protein profile in Camelina sativa. BMC Plant Biol. 2019;19(1). doi:10.1186/s12870-019-1873-0.