Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 14, 2023 - Issue 1
4,514
Views
0
CrossRef citations to date
0
Altmetric
Review

CRISPR/Cas9-gene editing approaches in plant breeding

ORCID Icon, , , &
Pages 1-17 | Received 06 Mar 2023, Accepted 05 Sep 2023, Published online: 19 Sep 2023

References

  • Chen H, Lin Y. Promise and issues of genetically modified crops. Curr Opin Plant Biol. 2013;16(2):255–60. doi:10.1016/j.pbi.2013.03.007.
  • Aldemita RR, Reaño IME, Solis RO, Hautea RA. Trends in global approvals of biotech crops (1992–2014). GM Crops & Food. 2015;6(3):150–66. doi:10.1080/21645698.2015.1056972.
  • Araki M, Ishii T. Towards social acceptance of plant breeding by genome editing. Trends Plant Sci. 2015;20(3):145–49. doi:10.1016/j.tplants.2015.01.010.
  • Belhaj K, Chaparro-Garcia A, Kamoun S, Patron NJ, Nekrasov V. Editing plant genomes with CRISPR/Cas9. Curr Opin Biotechnol. 2015;32:76–84. doi:10.1016/j.copbio.2014.11.007.
  • Carroll D. Genome engineering with targetable nucleases. Annu Rev Biochem. 2014;83(1):409–39. doi:10.1146/annurev-biochem-060713-035418.
  • Huang S, Weigel D, Beachy RN, Li J. A proposed regulatory framework for genome-edited crops. Nat Genet. 2016;48(2):109–11. doi:10.1038/ng.3484.
  • Schiml S, Puchta H. Revolutionizing plant biology: multiple ways of genome engineering by CRISPR/Cas. Plant Methods. 2016;12(1):1–9. doi:10.1186/s13007-016-0103-0.
  • Puchta H. The repair of double-strand breaks in plants: mechanisms and consequences for genome evolution. J Exp Bot. 2005;56:1–14. doi:10.1093/jxb/eri025.
  • Vu GTH, Cao HX, Watanabe K, Hensel G, Blattner FR, Kumlehn J, Schubert I. Repair of site-specific DNA double-strand breaks in barley occurs via diverse pathways primarily involving the sister chromatid. Plant Cell. 2014;26(5):2156–67. doi:10.1105/tpc.114.126607.
  • Jinek M, Chylinski K, Fonfara I, Hauer M, Doudna JA, Charpentier E. A programmable dual-RNA–guided DNA endonuclease in adaptive bacterial immunity. Science (80-). 2012;337(6096):816–21. doi:10.1126/science.1225829.
  • Fauser F, Schiml S, Puchta H. Both CRISPR/Cas-based nucleases and nickases can be used efficiently for genome engineering in Arabidopsis thaliana. Plant J. 2014;79(2):348–59. doi:10.1111/tpj.12554.
  • Feng Z, Mao Y, Xu N, Zhang B, Wei P, Yang D-L, Wang Z, Zhang Z, Zheng R, Yang L, et al. Multigeneration analysis reveals the inheritance, specificity, and patterns of CRISPR/Cas-induced gene modifications in Arabidopsis. Proc Natl Acad Sci. 2014;111(12):4632–37. doi:10.1073/pnas.1400822111.
  • Jiang W, Zhou H, Bi H, Fromm M, Yang B, Weeks DP. Demonstration of CRISPR/Cas9/sgRNA-mediated targeted gene modification in Arabidopsis, tobacco, sorghum and rice. Nucleic Acids Res. 2013;41(20):e188–e188. doi:10.1093/nar/gkt780.
  • Cho SW, Kim S, Kim JM, Kim J-S. Targeted genome engineering in human cells with the Cas9 RNA-guided endonuclease. Nat Biotechnol. 2013;31(3):230–32. doi:10.1038/nbt.2507.
  • Jinek M, East A, Cheng A, Lin S, Ma E, Doudna J. RNA-programmed genome editing in human cells. Elife. 2013;2:e00471. doi:10.7554/eLife.00471.
  • Nerkar G, Devarumath S, Purankar M, Kumar A, Valarmathi R, Devarumath R, Appunu C. Advances in crop breeding through precision genome editing. Front Genet. 2022;13:880195. doi:10.3389/fgene.2022.880195.
  • Wang F, Xu Y, Li W, Chen Z, Wang J, Fan F, Tao Y, Jiang Y, Zhu Q-H, Yang J. Creating a novel herbicide-tolerance OsALS allele using CRISPR/Cas9 mediated gene editing. Crop J. 2021;9(2):305–12. doi:10.1016/j.cj.2020.06.001.
  • Zaidi SSEA, Mahas A, Vanderschuren H, Mahfouz MM. Engineering crops of the future: CRISPR approaches to develop climate-resilient and disease-resistant plants. Genome Biol. 2020;21(1):1–19. doi:10.1186/s13059-020-02204-y.
  • Kouhen M, García-Caparrós P, Twyman RM, Abdelly C, Mahmoudi H, Schillberg S, Debez A. Improving environmental stress resilience in crops by genome editing: insights from extremophile plants. Crit Rev Biotechnol. 2022;43(4):559–74. doi:10.1080/07388551.2022.2042481.
  • Kumar D, Yadav A, Ahmad R, Dwivedi UN, Yadav K. CRISPR-based genome editing for nutrient enrichment in crops: a promising approach toward global food security. Front Genet. 2022;13:1650. doi:10.3389/fgene.2022.932859.
  • Gao J, Wang G, Ma S, Xie X, Wu X, Zhang X, Wu Y, Zhao P, Xia Q. CRISPR/Cas9-mediated targeted mutagenesis in Nicotiana tabacum. Plant Mol Biol. 2015;87(1–2):99–110. doi:10.1007/s11103-014-0263-0.
  • Rönspies M, Schindele P, Wetzel R, Puchta H. CRISPR–Cas9-mediated chromosome engineering in Arabidopsis thaliana. Nat Protoc. 2022;17(5):1332–58. doi:10.1038/s41596-022-00686-7.
  • Ali Z, Eid A, Ali S, Mahfouz MM. Pea early-browning virus-mediated genome editing via the CRISPR/Cas9 system in Nicotiana benthamiana and Arabidopsis. Virus Res. 2018;244:333–37. doi:10.1016/j.virusres.2017.10.009.
  • Selma S, Gianoglio S, Uranga M, Vázquez‐Vilar M, Espinosa‐Ruiz A, Drapal M, Fraser PD, Daròs J-A, Orzáez D. Potato virus X-delivered CRISPR activation programs lead to strong endogenous gene induction and transient metabolic reprogramming in Nicotiana benthamiana. Plant J. 2022;111(6):1550–64. doi:10.1111/tpj.15906.
  • Wu R, Lucke M, Jang Y, Zhu W, Symeonidi E, Wang C, Fitz J, Xi W, Schwab R, Weigel D, et al. An efficient CRISPR vector toolbox for engineering large deletions in Arabidopsis thaliana. Plant Methods. 2018;14(1):1–9. doi:10.1186/s13007-018-0330-7.
  • Yin K, Han T, Xie K, Zhao J, Song J, Liu Y. Engineer complete resistance to cotton leaf curl multan virus by the CRISPR/Cas9 system in Nicotiana benthamiana. Phytopathol Res. 2019;1(1):9. doi:10.1186/s42483-019-0017-7.
  • Jang H-A, Bae E-K, Kim M-H, Park S-J, Choi N-Y, Pyo S-W, Lee C, Jeong H-Y, Lee H, Choi Y-I, et al. CRISPR-knockout of CSE gene improves saccharification efficiency by reducing lignin content in hybrid poplar. Int J Mol Sci. 2021;22(18):9750. doi:10.3390/ijms22189750.
  • Dai T, Chen Z, Guo Y, Ye J. Rapid detection of the pine wood nematode Bursaphelenchus xylophilus using recombinase polymerase amplification combined with CRISPR/Cas12a. Crop Protection. 2023;170:106259. doi:10.1016/j.cropro.2023.106259.
  • Cui Y, Zhao J, Gao Y, Zhao R, Zhang J, Kong L. Efficient multi-sites genome editing and plant regeneration via somatic embryogenesis in Picea glauca. Front Plant Sci. 2021;12:2198. doi:10.3389/fpls.2021.751891.
  • Cao HX, Vu GTH, Gailing O. From genome sequencing to CRISPR-based genome editing for climate-resilient forest trees. Int J Mol Sci. 2022;23(2):966. doi:10.3390/ijms23020966.
  • Thapliyal G, Bhandari MS, Vemanna RS, Pandey S, Meena RK, Barthwal S. Engineering traits through CRISPR/cas genome editing in woody species to improve forest diversity and yield. Crit Rev Biotechnol. 2022;43(6):884–903. doi:10.1080/07388551.2022.2092714.
  • Anzalone AV, Koblan LW, Liu DR. Genome editing with CRISPR–Cas nucleases, base editors, transposases and prime editors. Nat Biotechnol. 2020;38(7):824–44. doi:10.1038/s41587-020-0561-9.
  • Aach J, Mali P, Church GM. CasFinder: flexible algorithm for identifying specific Cas9 targets in genomes. bioRxiv. 2014;5074.
  • Heigwer F, Kerr G, Boutros M. E-CRISP: fast CRISPR target site identification. Nat Methods. 2014;11(2):122–23. doi:10.1038/nmeth.2812.
  • Labun K, Montague TG, Gagnon JA, Thyme SB, Valen E. CHOPCHOP v2: a web tool for the next generation of CRISPR genome engineering. Nucleic Acids Res. 2016;44(W1):W272–W76. doi:10.1093/nar/gkw398.
  • Labun K, Montague TG, Krause M, Torres Cleuren YN, Tjeldnes H, Valen E. CHOPCHOP v3: expanding the CRISPR web toolbox beyond genome editing. Nucleic Acids Res. 2019;47(W1):W171–W74. doi:10.1093/nar/gkz365.
  • Montague TG, Cruz JM, Gagnon JA, Church GM, Valen E. CHOPCHOP: a CRISPR/Cas9 and TALEN web tool for genome editing. Nucleic Acids Res. 2014;42(W1):W401–W07. doi:10.1093/nar/gku410.
  • Haeussler M, Schönig K, Eckert H, Eschstruth A, Mianné J, Renaud J-B, Schneider-Maunoury S, Shkumatava A, Teboul L, Kent J, et al. Evaluation of off-target and on-target scoring algorithms and integration into the guide RNA selection tool CRISPOR. Genome Biol. 2016;17(1):1–12. doi:10.1186/s13059-016-1012-2.
  • Hiranniramol K, Chen Y, Liu W, Wangb X, Luigi Martelli P. Generalizable sgRNA design for improved CRISPR/Cas9 editing efficiency. Bioinformatics. 2020;36(9):2684–89. doi:10.1093/bioinformatics/btaa041.
  • Naito Y, Hino K, Bono H, Tei KU. Crisprdirect: software for designing CRISPR/Cas guide RNA with reduced off-target sites. Bioinformatics. 2015;31(7):1120–23. doi:10.1093/bioinformatics/btu743.
  • Wu X, Kriz AJ, Sharp PA. Target specificity of the CRISPR-Cas9 system. Quant Biol. 2014;2(2):59–70. doi:10.1007/s40484-014-0030-x.
  • Hajiahmadi Z, Movahedi A, Wei H, Li D, Orooji Y, Ruan H, Zhuge Q. Strategies to increase on-target and reduce off-target effects of the CRISPR/Cas9 system in plants. Int J Mol Sci. 2019;20(15):3719. doi:10.3390/ijms20153719.
  • Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW, Donovan KF, Smith I, Tothova Z, Wilen C, Orchard R, et al. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat Biotechnol. 2016;34(2):184–91. doi:10.1038/nbt.3437.
  • Liu H, Wei Z, Dominguez A, Li Y, Wang X, Qi LS. CRISPR-ERA: a comprehensive design tool for CRISPR-mediated gene editing, repression and activation: fig. 1. Bioinformatics. 2015;31(22):3676–78. doi:10.1093/bioinformatics/btv423.
  • Gratz SJ, Ukken FP, Rubinstein CD, Thiede G, Donohue LK, Cummings AM, O’Connor-Giles KM. Highly specific and efficient CRISPR/Cas9-catalyzed homology-directed repair in Drosophila. Genetics. 2014;196(4):961–71. doi:10.1534/genetics.113.160713.
  • Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al. In vivo genome editing using staphylococcus aureus Cas9. Nature. 2015;520(7546):186–91. doi:10.1038/nature14299.
  • Zetsche B, Gootenberg JS, Abudayyeh OO, Slaymaker I, Makarova K, Essletzbichler P, Volz S, Joung J, van der Oost J, Regev A, et al. Cpf1 is a single RNA-guided endonuclease of a class 2 CRISPR-Cas system. Cell. 2015;163(3):759–71. doi:10.1016/j.cell.2015.09.038.
  • Asmamaw M, Zawdie B. Mechanism and applications of CRISPR/Cas-9-mediated genome editing. Biologics. 2021;15:353–61. doi:10.2147/BTT.S326422.
  • Lin Q, Zong Y, Xue C, Wang S, Jin S, Zhu Z, Wang Y, Anzalone AV, Raguram A, Doman JL, et al. Prime genome editing in rice and wheat. Nat Biotechnol. 2020;38(5):582–85. doi:10.1038/s41587-020-0455-x.
  • Chen L, Li W, Katin-Grazzini L, Ding J, Gu X, Li Y, Gu T, Wang R, Lin X, Deng Z, et al. A method for the production and expedient screening of CRISPR/Cas9-mediated non-transgenic mutant plants. Hortic Res. 2018;5(1):13. doi:10.1038/s41438-018-0023-4.
  • Liang Z, Zhang K, Chen K, Gao C. Targeted mutagenesis in zea mays using TALENs and the CRISPR/Cas system. J Genet Genomics. 2014;41(2):63–68. doi:10.1016/j.jgg.2013.12.001.
  • Zhang A, Liu Y, Wang F, Li T, Chen Z, Kong D, Bi J, Zhang F, Luo X, Wang J, et al. Enhanced rice salinity tolerance via CRISPR/Cas9 targeted mutagenesis of the OsRR22 gene. Mol Breeding. 2019;39(3). doi:10.1007/s11032-019-0954-y.
  • Zhang Y, Liang Z, Zong Y, Wang Y, Liu J, Chen K, Qiu J-L, Gao C. Efficient and transgene-free genome editing in wheat through transient expression of CRISPR/Cas9 DNA or RNA. Nat Commun. 2016;7(1):12617. doi:10.1038/ncomms12617.
  • Hussain HI, Yi Z, Rookes JE, Kong LX, Cahill DM. Mesoporous silica nanoparticles as a biomolecule delivery vehicle in plants. J Nanopart Res. 2013;15(6):1–15. doi:10.1007/s11051-013-1676-4.
  • Koo Y, Wang J, Zhang Q, Zhu H, Chehab EW, Colvin VL, Alvarez PJJ, Braam J. Fluorescence reports intact quantum dot uptake into roots and translocation to leaves of Arabidopsis thaliana and subsequent ingestion by insect herbivores. Environ Sci Technol. 2015;49(1):626–32. doi:10.1021/es5050562.
  • Liu Q, Chen B, Wang Q, Shi X, Xiao Z, Lin J, Fang X. Carbon nanotubes as molecular transporters for walled plant cells. Nano Lett. 2009;9(3):1007–10. doi:10.1021/nl803083u.
  • Frame BR, Drayton PR, Bagnall SV, Lewnau CJ, Bullock WP, Wilson HM, Dunwell JM, Thompson JA, Wang K. Production of fertile transgenic maize plants by silicon carbide whisker‐mediated transformation. Plant J. 1994;6(6):941–48. doi:10.1046/j.1365-313X.1994.6060941.x.
  • Kurepa J, Paunesku T, Vogt S, Arora H, Rabatic BM, Lu J, Wanzer MB, Woloschak GE, Smalle JA. Uptake and distribution of ultrasmall anatase TiO2 alizarin red S nanoconjugates in Arabidopsis thaliana. Nano Lett. 2010;10(7):2296–302. doi:10.1021/nl903518f.
  • Singh J, Kumar S, Alok A, Upadhyay SK, Rawat M, Tsang DCW, Bolan N, Kim K-H. The potential of green synthesized zinc oxide nanoparticles as nutrient source for plant growth. J Clean Prod. 2019;214:1061–70. doi:10.1016/j.jclepro.2019.01.018.
  • Matsushita J, Otani M, Wakita Y, Tanaka O, Shimada T. Transgenic plant regeneration through silicon carbide whisker-mediated transformation of rice (Oryza sativa L.). Breed Sci. 1999;49(1):21–26. doi:10.1270/jsbbs.49.21.
  • Arshad M, Zafar Y, Asad S. Silicon carbide whisker-mediated transformation of cotton (gossypium hirsutum L.). In: Transgenic cotton: methods and protocols. Springer; 2012. pp. 79–92. doi:10.1007/978-1-62703-212-4_7.
  • Ohta Y. High-efficiency genetic transformation of maize by a mixture of pollen and exogenous DNA. Proc Natl Acad Sci. 1986;83(3):715–19. doi:10.1073/pnas.83.3.715.
  • Sandhya D, Jogam P, Allini VR, Abbagani S, Alok A. The present and potential future methods for delivering CRISPR/Cas9 components in plants. J Gen Eng Biotech. 2020;18(1):25. doi:10.1186/s43141-020-00036-8.
  • Andersson M, Turesson H, Olsson N, Fält A-S, Ohlsson P, Gonzalez MN, Samuelsson M, Hofvander P. Genome editing in potato via CRISPR‐Cas9 ribonucleoprotein delivery. Physiol Plant. 2018;164(4):378–84. doi:10.1111/ppl.12731.
  • Murovec J, Guček K, Bohanec B, Avbelj M, Jerala R. DNA-free genome editing of Brassica oleracea and B. rapa protoplasts using CRISPR-Cas9 ribonucleoprotein complexes. Front Plant Sci. 2018;9:1594. doi:10.3389/fpls.2018.01594.
  • Svitashev S, Young JK, Schwartz C, Gao H, Falco SC, Cigan AM. Targeted mutagenesis, precise gene editing, and site-specific gene insertion in maize using Cas9 and guide RNA. Plant Physiol. 2015;169(2):931–45. doi:10.1104/pp.15.00793.
  • Bharat SS, Li S, Li J, Yan L, Xia L. Base editing in plants: Current status and challenges. Crop J. 2020;8(3):384–95. doi:10.1016/j.cj.2019.10.002.
  • Monsur MB, Shao G, Lv Y, Ahmad S, Wei X, Hu P, Tang S. Base editing: the ever expanding clustered regularly interspaced short palindromic repeats (CRISPR) tool kit for precise genome editing in plants. Genes (Basel). 2020;11(4):466. doi:10.3390/genes11040466.
  • Ma L, Liang Z. CRISPR technology for abiotic stress resistant crop breeding. Plant Growth Regul. 2021;94(2):115–29. doi:10.1007/s10725-021-00704-w.
  • Li J, Sun Y, Du J, Zhao Y, Xia L. Generation of targeted point mutations in rice by a modified CRISPR/Cas9 system. Mol Plant. 2017;10(3):526–29. doi:10.1016/j.molp.2016.12.001.
  • Pickar-Oliver A, Gersbach CA. The next generation of CRISPR–Cas technologies and applications. Nat Rev Mol Cell Biol. 2019;20(8):490–507. doi:10.1038/s41580-019-0131-5.
  • Yoshimi K, Kaneko T, Voigt B, Mashimo T. Allele-specific genome editing and correction of disease-associated phenotypes in rats using the CRISPR–Cas platform. Nat Commun. 2014;5(1):1–9. doi:10.1038/ncomms5240.
  • Miki D, Zhang W, Zeng W, Feng Z, Zhu J-K. CRISPR/Cas9-mediated gene targeting in Arabidopsis using sequential transformation. Nat Commun. 2018;9(1):1–9. doi:10.1038/s41467-018-04416-0.
  • Vlk D, Řepková J. Application of next-generation sequencing in plant breeding. Czech J Genet Plant Breed. 2017;53(3):89–96. doi:10.17221/192/2016-CJGPB.
  • Wang FZ, Chen MX, Yu LJ, Xie L-J, Yuan L-B, Qi H, Xiao M, Guo W, Chen Z, Yi K, et al. OsARM1, an R2R3 MYB transcription factor, is involved in regulation of the response to arsenic stress in rice. Front Plant Sci. 2017;8:1868. doi:10.3389/fpls.2017.01868.
  • Güell M, Yang L, Church GM. Genome editing assessment using CRISPR genome analyzer (CRISPR-GA). Bioinformatics. 2014;30(20):2968–70. doi:10.1093/bioinformatics/btu427.
  • Boel A, Steyaert W, De Rocker N, Menten B, Callewaert B, De Paepe A, Coucke P, Willaert A. BATCH-GE: batch analysis of next-generation sequencing data for genome editing assessment. Sci Rep. 2016;6(1):1–10. doi:10.1038/srep30330.
  • Canver MC, Haeussler M, Bauer DE, Orkin SH, Sanjana NE, Shalem O, Yuan G-C, Zhang F, Concordet J-P, Pinello L, et al. Integrated design, execution, and analysis of arrayed and pooled CRISPR genome-editing experiments. Nat Protoc. 2018;13(5):946–86. doi:10.1038/nprot.2018.005.
  • Park J, Lim K, Kim J-S, Bae S, Valencia A. Cas-analyzer: an online tool for assessing genome editing results using NGS data. Bioinformatics. 2017;33(2):286–88. doi:10.1093/bioinformatics/btw561.
  • You Q, Zhong Z, Ren Q, Hassan F, Zhang Y, Zhang T. Crisprmatch: an automatic calculation and visualization tool for high-throughput CRISPR genome-editing data analysis. Int J Biol Sci. 2018;14(8):858. doi:10.7150/ijbs.24581.
  • Shillito RD, Whitt S, Ross M, Ghavami F, De Vleesschauwer D, D’Halluin K, Van Hoecke A, Meulewaeter F. Detection of genome edits in plants—from editing to seed. Vitr Cell Dev Biol. 2021;57(4):595–608. doi:10.1007/s11627-021-10214-z.
  • Chen K, Wang Y, Zhang R, Zhang H, Gao C. Crispr/cas genome editing and precision plant breeding in agriculture. Annu Rev Plant Biol. 2019;70(1):667–97. doi:10.1146/annurev-arplant-050718-100049.
  • Connelly JP, Pruett-Miller SM. CRIS. py: a versatile and high-throughput analysis program for CRISPR-based genome editing. Sci Rep. 2019;9(1):1–8. doi:10.1038/s41598-019-40896-w.
  • Chen C-L, Rodiger J, Chung V, Viswanatha R, Mohr SE, Hu Y, Perrimon N. SNP-CRISPR: a web tool for SNP-specific genome editing. G3 Genes, Genomes, Genet. 2020a;10(2):489–94. doi:10.1534/g3.119.400904.
  • Song M, Kim HK, Lee S, Kim Y, Seo S-Y, Park J, Choi JW, Jang H, Shin JH, Min S, et al. Sequence-specific prediction of the efficiencies of adenine and cytosine base editors. Nat Biotechnol. 2020;38(9):1037–43. doi:10.1038/s41587-020-0573-5.
  • Arbab M, Shen MW, Mok B, Wilson C, Matuszek Ż, Cassa CA, Liu DR. Determinants of base editing outcomes from target library analysis and machine learning. Cell. 2020;182(2):463–80.e30. doi:10.1016/j.cell.2020.05.037.
  • Hwang G-H, Bae S. Web-based base editing toolkits: bE-Designer and BE-Analyzer. In: Computational methods in synthetic biology. Springer US; 2021. pp. 81–88. doi:10.1007/978-1-0716-0822-7_7.
  • Xie X, Li F, Tan X, Zeng D, Liu W, Zeng W, Zhu Q, Liu Y-G. Betarget: a versatile web-based tool to design guide RNAs for base editing in plants. Comput Struct Biotechnol J. 2022;20:4009–14. doi:10.1016/j.csbj.2022.07.046.
  • Domazetovska A, Jensen SO, Gray M, Radzieta M, Maley M. Culture-free Phylogenetic analysis of Legionella pneumophila using targeted CRISPR/Cas9 next-generation sequencing. Microbiol Spectr. 2022;10(4):e00359–22. doi:10.1128/spectrum.00359-22.
  • Li R, Ba Y, Song Y, Cui J, Zhang X, Zhang D, Yuan Z, Yang L. Rapid and sensitive screening and identification of CRISPR/Cas9 edited rice plants using quantitative real-time PCR coupled with high resolution melting analysis. Food Control. 2020;112:107088. doi:10.1016/j.foodcont.2020.107088.
  • Kalendar R, Shustov AV, Akhmetollayev I, Kairov U. Designing allele-specific competitive-extension PCR-based assays for high-throughput genotyping and gene characterization. Front Mol Biosci. 2022;9:773956. doi:10.3389/fmolb.2022.773956.
  • Hui L, Zhao M, He J, Hu Y, Huo Y, Hao H, Hao Y, Zhu W, Wang Y, Xu M, et al. A simple and reliable method for creating PCR-detectable mutants in Arabidopsis with the polycistronic tRNA–gRNA CRISPR/Cas9 system. Acta Physiol Plant. 2019;41(10):1–14. doi:10.1007/s11738-019-2961-3.
  • Chen J, Zhang Y, Chen C, Zhang Y, Zhou W, Sang Y. Identification and quantification of cassava starch adulteration in different food starches by droplet digital PCR. PloS One. 2020b;15(2):e0228624. doi:10.1371/journal.pone.0228624.
  • Demeke T, Lee S-J, Eng M. Increasing the efficiency of Canola and soybean GMO detection and quantification using multiplex droplet digital PCR. Biology (Basel). 2022;11(2):201. doi:10.3390/biology11020201.
  • Li J, Gao H, Li Y, Xiao F, Zhai S, Wu G, Wu Y. Event-specific PCR methods to quantify the genetically modified DBN9936 maize. J Food Compos Anal. 2022;105:104236. doi:10.1016/j.jfca.2021.104236.
  • Aliaga-Franco N, Zhang C, Presa S, Srivastava AK, Granell A, Alabadí D, Sadanandom A, Blázquez MA, Minguet EG. Identification of transgene-free CRISPR-edited plants of rice, tomato, and arabidopsis by monitoring DsRED fluorescence in dry seeds. Front Plant Sci. 2019;10:1150. doi:10.3389/fpls.2019.01150.
  • Ouyang L, Ma M, Li L. An efficient transgene-free DNA-editing system for Arabidopsis using a fluorescent marker. Biotechnol Lett. 2020;42(2):313–18. doi:10.1007/s10529-019-02778-z.
  • Wang J, Chen H. A novel CRISPR/Cas9 system for efficiently generating Cas9-free multiplex mutants in Arabidopsis. Abiotech. 2020;1(1):6–14. doi:10.1007/s42994-019-00011-z.
  • He Y, Zhu M, Wang L, Wu J, Wang Q, Wang R, Zhao Y. Programmed self-elimination of the CRISPR/Cas9 construct greatly accelerates the isolation of edited and transgene-free rice plants. Mol Plant. 2018;11(9):1210–13. doi:10.1016/j.molp.2018.05.005.
  • Wu T-M, Huang J-Z, Oung H-M, Hsu Y-T, Tsai Y-C, Hong C-Y. H2O2-based method for rapid detection of transgene-free rice plants from segregating CRISPR/Cas9 genome-edited progenies. Int J Mol Sci. 2019;20(16):3885. doi:10.3390/ijms20163885.
  • Zafar SA, Zaidi SSEA, Gaba Y, Singla-Pareek SL, Dhankher OP, Li X, Mansoor S, Pareek A. Engineering abiotic stress tolerance via CRISPR/Cas-mediated genome editing. J Exp Bot. 2020;71(2):470–79. doi:10.1093/jxb/erz476.
  • Cheng Y, Zhang N, Hussain S, Ahmed S, Yang W, Wang S. Integration of a FT expression cassette into CRISPR/Cas9 construct enables fast generation and easy identification of transgene-free mutants in Arabidopsis. PloS One. 2019;14(9):e0218583. doi:10.1371/journal.pone.0218583.
  • Son S, Park SR. Challenges facing CRISPR/Cas9-based genome editing in plants. Front Plant Sci. 2022;13:902413. doi:10.3389/fpls.2022.902413.
  • Choi SH, Ahn WS, Jie EY, Cho H-S, Kim SW. Development of late-bolting plants by CRISPR/Cas9-mediated genome editing from mesophyll protoplasts of lettuce. Plant Cell Rep. 2022;41(7):1627–30. doi:10.1007/s00299-022-02875-w.
  • Tong B, Dong H, Cui Y, Jiang P, Jin Z, Zhang D. The versatile type V CRISPR effectors and their application prospects. Front Cell Dev Biol. 2021;8:622103. doi:10.3389/fcell.2020.622103.
  • Koonin EV, Makarova KS, Zhang F. Diversity, classification and evolution of CRISPR-Cas systems. Curr Opin Microbiol. 2017;37:67–78. doi:10.1016/j.mib.2017.05.008.
  • Gaillochet C, Peña Fernández A, Goossens V, D’Halluin K, Drozdzecki A, Shafie M, Van Duyse J, Van Isterdael G, Gonzalez C, Vermeersch M, et al. Systematic optimization of Cas12a base editors in wheat and maize using the ITER platform. Genome Biol. 2023;24(1):1–24. doi:10.1186/s13059-022-02836-2.
  • Lawrenson T, Hinchliffe A, Forner M, Harwood W. Highly efficient genome editing in barley using novel LbCas12a variants and impact of sgRNA architecture. bioRxiv. 2022;2022–04.
  • Matsuo K, Atsumi G. CRISPR/Cas9-mediated knockout of the RDR6 gene in Nicotiana benthamiana for efficient transient expression of recombinant proteins. Planta. 2019;250(2):463–73. doi:10.1007/s00425-019-03180-9.
  • Venkatesh J, Lee S-Y, Kang H-J, Lee S, Lee J-H, Kang B-C. Heat stress induced potato virus X-mediated CRISPR/Cas9 genome editing in Nicotiana benthamiana. Plant Breed Biotechnol. 2022;10(3):186–96. doi:10.9787/PBB.2022.10.3.186.
  • Nagalakshmi U, Meier N, Liu J-Y, Voytas, DF, Dinesh-Kumar, SP. High efficiency multiplex biallelic heritable editing in Arabidopsis using an RNA virus. Plant Physiol. 2022;189(3):1241–5.
  • Oberkofler V, Bäurle I. Inducible epigenome editing probes for the role of histone H3K4 methylation in Arabidopsis heat stress memory. Plant Physiol. 2022;189(2):703–14. doi:10.1093/plphys/kiac113.
  • Huang Y, Xuan H, Yang C, Guo N, Wang H, Zhao J, Xing H. GmHsp90A2 is involved in soybean heat stress as a positive regulator. Plant Sci. 2019;285:26–33. doi:10.1016/j.plantsci.2019.04.016.
  • Zhang Y, Blahut-Beatty L, Zheng S, Clough SJ, Simmonds D. The role of a soybean 14-3-3 gene (Glyma05g29080) on white mold resistance and nodulation investigations using CRISPR-Cas9 editing and RNA silencing. Mol Plant-Microbe Interact. 2022;36(3):159–64. doi:10.1094/MPMI-07-22-0157-R.
  • Schmidt C, Fransz P, Rönspies M, Dreissig S, Fuchs J, Heckmann S, Houben A, Puchta H. Changing local recombination patterns in Arabidopsis by CRISPR/Cas mediated chromosome engineering. Nat Commun. 2020;11(1):4418. doi:10.1038/s41467-020-18277-z.
  • González MN, Massa GA, Andersson M, Turesson H, Olsson N, Fält A-S, Storani L, Décima Oneto CA, Hofvander P, Feingold SE, et al. Reduced enzymatic browning in potato tubers by specific editing of a polyphenol oxidase gene via ribonucleoprotein complexes delivery of the CRISPR/Cas9 system. Front Plant Sci. 2020;10:1649. doi:10.3389/fpls.2019.01649.
  • Komatsu A, Ohtake M, Shimatani Z, Nishida K. Production of herbicide-sensitive strain to prevent volunteer rice infestation using a CRISPR-Cas9 cytidine deaminase fusion. Front Plant Sci. 2020;11:925. doi:10.3389/fpls.2020.00925.
  • Osakabe Y, Watanabe T, Sugano SS, Ueta R, Ishihara R, Shinozaki K, Osakabe K. Optimization of CRISPR/Cas9 genome editing to modify abiotic stress responses in plants. Sci Rep. 2016;6(1):26685. doi:10.1038/srep26685.
  • Li B, Liang S, Alariqi M, Wang F, Wang G, Wang Q, Xu Z, Yu L, Naeem Zafar M, Sun L, et al. The application of temperature sensitivity CRISPR/LbCpf1 (LbCas12a) mediated genome editing in allotetraploid cotton (G. Hirsutum) and creation of nontransgenic, gossypol-free cotton. Plant Biotechnol J. 2021;19(2):221–23. doi:10.1111/pbi.13470.
  • Baeg GJ, Kim SH, Choi DM, Tripathi S, Han Y-J, Kim J-I. CRISPR/Cas9-mediated mutation of 5-oxoprolinase gene confers resistance to sulfonamide compounds in Arabidopsis. Plant Biotechnol Rep. 2021;15(6):753–64. doi:10.1007/s11816-021-00718-w.
  • Ji X, Zhang H, Zhang Y, Wang Y, Gao C. Establishing a CRISPR–Cas-like immune system conferring DNA virus resistance in plants. Nat Plants. 2015;1(10):15144. doi:10.1038/nplants.2015.144.
  • Liu H, Hu M, Wang Q, Cheng L, Zhang Z. Role of papain-like cysteine proteases in plant development. Front Plant Sci. 2018;9:871. doi:10.3389/fpls.2018.01717.
  • Roy A, Zhai Y, Ortiz J, Neff M, Mandal B, Mukherjee SK, Pappu HR. Multiplexed editing of a begomovirus genome restricts escape mutant formation and disease development. PloS One. 2019;14(10):e0223765. doi:10.1371/journal.pone.0223765.
  • Zhang T, Zheng Q, Yi X, An H, Zhao Y, Ma S, Zhou G. Establishing RNA virus resistance in plants by harnessing CRISPR immune system. Plant Biotechnol J. 2018;16(8):1415–23. doi:10.1111/pbi.12881.
  • Curtin SJ, Xiong Y, Michno JM, Campbell BW, Stec AO, Čermák T, Starker C, Voytas DF, Eamens AL, Stupar RM. CRISPR/Cas9 and TALENs generate heritable mutations for genes involved in small RNA processing of glycine max and Medicago Truncatula. Plant Biotechnol J. 2018;16(6):1125–37. doi:10.1111/pbi.12857.
  • Khan S, Mahmood MS, Rahman SU, Rizvi F, Ahmad A. Evaluation of the CRISPR/Cas9 system for the development of resistance against cotton leaf curl virus in model plants. Plant Protec Sci. 2020;56(3):154–62. doi:10.17221/105/2019-PPS.
  • Li P, Li X, Jiang M. CRISPR/Cas9 mediated mutagenesis of WRKY3 and WRKY4 function decreases salt and me-JA stress tolerance in Arabidopsis thaliana. Mol Biol Rep. 2021;48(8):5821–32. doi:10.1007/s11033-021-06541-4.
  • Gomez MA, Berkoff KC, Gill BK, Iavarone AT, Lieberman SE, Ma JM, Schultink A, Karavolias NG, Wyman SK, Chauhan RD, et al. CRISPR-Cas9- mediated knockout of CYP79D1 and CYP79D2 in cassava attenuates toxic cyanogen production. Front Plant Sci. 2023;13:1079254. doi:10.3389/fpls.2022.1079254.
  • Hummel AW, Chauhan RD, Cermak T, Mutka AM, Vijayaraghavan A, Boyher A, Starker CG, Bart R, Voytas DF, Taylor NJ, et al. Allele exchange at the EPSPS locus confers glyphosate tolerance in cassava. Plant Biotechnol J. 2018;16(7):1275–82. doi:10.1111/pbi.12868.
  • Wolabu TW, Mahmood K, Jerez IT, Cong L, Yun J, Udvardi M, Tadege M, Wang Z, Wen J. Multiplex CRISPR/Cas9-mediated mutagenesis of alfalfa FLOWERING LOCUS Ta1(MsFTa1) leads to delayed flowering time with improved forage biomass yield and quality. Plant Biotechnol J. 2023;21(7):1–10. doi:10.1111/pbi.14042.
  • Tripathi JN, Ntui VO, Ron M, Muiruri SK, Britt A, Tripathi L. CRISPR/Cas9 editing of endogenous banana streak virus in the B genome of Musa spp. overcomes a major challenge in banana breeding. Commun Biol. 2019;2(1):46. doi:10.1038/s42003-019-0288-7.
  • Santosh Kumar V, Verma RK, Yadav SK, Yadav P, Watts A, Rao MV, Chinnusamy V. CRISPR-Cas9 mediated genome editing of drought and salt tolerance (OsDST) gene in indica mega rice cultivar MTU1010. Physiol Mol Biol Plants. 2020;26(6):1099–110. doi:10.1007/s12298-020-00819-w.
  • Lan T, Zheng Y, Su Z, Yu S, Song H, Zheng X, Lin G, Wu W. OsSPL10, a SBP-Box gene, plays a dual role in salt tolerance and trichome formation in rice (Oryza sativa L.). G3: Genes, Genomes, Genetics. 2019;9(12):4107–14. doi:10.1534/g3.119.400700.
  • Nandy S, Pathak B, Zhao S, Srivastava V. Heat-shock-inducible CRISPR/Cas9 system generates heritable mutations in rice. Plant Direct. 2019;3(5):145. doi:10.1002/pld3.145.
  • Butt H, Rao GS, Sedeek K, Aman R, Kamel R, Mahfouz M. Engineering herbicide resistance via prime editing in rice. Plant Biotechnol J. 2018;18(12):2370–72. doi:10.1111/pbi.13399.
  • Tang X, Lowder LG, Zhang T, Malzahn AA, Zheng X, Voytas DF, Zhong Z, Chen Y, Ren Q, Li Q, et al. Correction: a CRISPR–Cpf1 system for efficient genome editing and transcriptional repression in plants. Nature Plants. 2017;3(7):18. doi:10.1038/nplants.2017.103.
  • Lu HP, Liu SM, Xu SL, Chen W-Y, Zhou X, Tan Y-Y, Huang J-Z, Shu Q-Y. CRISPR-S: an active interference element for a rapid and inexpensive selection of genome-edited, transgene-free rice plants. Plant Biotechnol J. 2017;15(11):1371–73. doi:10.1111/pbi.12788.
  • Nieves-Cordones M, Mohamed S, Tanoi K, Kobayashi NI, Takagi K, Vernet A, Guiderdoni E, Périn C, Sentenac H, Véry A-A, et al. Production of low-Cs+rice plants by inactivation of the K+transporter os HAK 1 with the CRISPR-Cas system. Plant J. 2017;92(1):43–56. doi:10.1111/tpj.13632.
  • Mao Y, Botella JR, Liu Y, Zhu J-K. Gene editing in plants: progress and challenges. National Sci Rev. 2019;6(3):421–37. doi:10.1093/nsr/nwz005.
  • Zhou J, Peng Z, Long J, Sosso D, Liu B, Eom J-S, Huang S, Liu S, Vera Cruz C, Frommer WB, et al. Gene targeting by the TAL effector PthXo2 reveals cryptic resistance gene for bacterial blight of rice. Plant J. 2015;82(4):632–43. doi:10.1111/tpj.12838.
  • Lu Y, Tian Y, Shen R, Yao Q, Wang M, Chen M, Dong J, Zhang T, Li F, Lei M, et al. Targeted, efficient sequence insertion and replacement in rice. Nat Biotechnol. 2018;38(12):1402–07. doi:10.1038/s41587-020-0581-5.
  • Baltes NJ, Hummel AW, Konecna E, Cegan R, Bruns AN, Bisaro DM, Voytas DF. Conferring resistance to geminiviruses with the CRISPR–Cas prokaryotic immune system. Natural. 2015;1(10):15145. doi:10.1038/nplants.2015.145.
  • Ali Z, Abulfaraj A, Idris A, Ali S, Tashkandi M, Mahfouz MM. CRISPR/Cas9-mediated viral interference in plants. Genome Biol. 2015;16(1):238. doi:10.1186/s13059-015-0799-6.
  • Hong Y, Meng J, He X, Zhang Y, Liu Y, Zhang C, Qi H, Luan Y. Editing miR482b and miR482c simultaneously by CRISPR/Cas9 enhanced tomato resistance to phytophthora infestans. Phytopathology®. 2021;111(6):1008–16. doi:10.1094/PHYTO-08-20-0360-R.
  • Silva CJ, Abeele C, Ortega-Salazar I, Papin V, Adaskaveg JA, Wang D, Casteel CL, Seymour GB, Blanco-Ulate B. Host susceptibility factors render ripe tomato fruit vulnerable to fungal disease despite active immune responses. Journal Of Experimental Botany. 2021;72(7):2696–709. doi:10.1093/jxb/eraa601.
  • Li R, Zhang L, Wang L, Chen L, Zhao R, Sheng J, Shen L. Reduction of tomato-Plant chilling tolerance by CRISPR–Cas9-Mediated SlCBF1 mutagenesis. J Agri Food Chem. 2018;66(34):9042–51. doi:10.1021/acs.jafc.8b02177.
  • Ortigosa A, Gimenez-Ibanez S, Leonhardt N, Solano R. Design of a bacterial speck resistant tomato by CRISPR/Cas9-mediated editing of SlJAZ2. Plant Biotechnol J. 2019;17(3):665–73. doi:10.1111/pbi.13006.
  • Tashkandi M, Ali Z, Aljedaani F, Shami A, Mahfouz, MM. Engineering resistance against tomato yellow leaf curl virus via the CRISPR/Cas9 system in tomato. Plant Signal. 2018;13(10):e1525996.
  • Kis A, Hamar É, Tholt G, Bán R, Havelda Z. Creating highly efficient resistance against wheat dwarf virus in barley by employing CRISPR/Cas9 system. Plant Biotechnol J. 2019;17(6):1004–06. doi:10.1111/pbi.13077.