Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
2,714
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Risk-appropriate regulations for gene-editing technologies

&
Pages 1-14 | Received 20 Oct 2023, Accepted 07 Dec 2023, Published online: 12 Jan 2024

References

  • Royal Society (undated) What are genetic technologies. The Royal Society. London (UK). [accessed 2023 Dec 4]. https://royalsociety.org/topics-policy/projects/genetic-technologies/.
  • Convention on Biological Diversity. 2022. Kunming-Montreal global biodiversity framework. [accessed 2023 Oct 10]. https://www.cbd.int/doc/decisions/cop-15/cop-15-dec-04-en.pdf.
  • Agroecology Now. 2022. Agroecology – a promising alternative to the biodiversity crisis in agriculture and industrial food systems. [accessed 2023 Dec 1]. https://www.agroecologynow.com/agroecology-alternative-to-biodiversity-crisis/
  • Desertif’actions 2022. Agroecology Brought to the COP 15. [accessed 2023 Dec 1]. https://desertif-actions.org/en/homepage/desertifactions-2022/agroecology-brought-to-the-cop-15/.
  • Balmford A. Concentrating vs spreading our footprint: how to meet humanity’s needs at least cost to nature. J Zool. 2021;315(2):79–109. doi:10.1111/jzo.12920.
  • Feniuk C, Balmford A, Green R, et al. Land sparing to make space for species dependent on natural habitats and high nature value farmland. Proc Biological Sci. 2019 Aug 28;286(1909):20191483. Epub. doi:10.1098/rspb.2019.1483
  • Finch T, Green R, Masomino D, Peach N, Balmford A, Tulloch A. Optimising nature conservation outcomes for a given region-wide level of food production. J Appl Ecol. 2020 [22 Feb 2020];57(5):985–94. doi:10.1111/1365-2664.13594.
  • Balmford A, Bateman I. Current conservation policies risk accelerating biodiversity loss, Comment, Nature 21st June 2023. Nature. 2023a;618(7966): 671–74. Current conservation policies risk accelerating biodiversity loss (nature.com). 10.1038/d41586-023-01979-x
  • Balmford A, Bateman I. Current land use policies risk accelerating farming’s environmental impact. BalmfordBateman | SSA: Science for Sustainable Agriculture, UK; 2022. scienceforsustainableagriculture.com.
  • European Commission. Directorate-general for research and innovation. A decade of EU-funded GMO research (2001-2010). 2010 [accessed 2023 Oct, 10]. https://data.europa.eu/doi/10.2777/97784.
  • Klümper W, Qaim M, Albertini E. A meta-analysis of the impacts of genetically modified crops. PLoS ONE. 2014;9: 11(11):e111629. doi:10.1371/journal.pone.0111629.
  • National Academies of Science, Engineering and Medicine. 2016. Genetically engineered crops. [accessed 2023 Oct, 10]. https://nap.nationalacademies.org/catalog/23395/genetically-engineered-crops-experiences-and-prospects.
  • Smyth SJ, Webb SR, Phillips PWB. The role of public-private partnerships in improving global food security. Global Food Security. 2021;3:100588. doi:10.1016/j.gfs.2021.100588.
  • Organisation for Economic Cooperation and Development. making better policies for food systems. Paris: OECD; 2021. doi:10.1787/ddfba4de-en.
  • Conway G, Toenniessen G. Feeding the world in the 21st century. Nature. 1999;403(suppl 6761): 402, c55–c58. doi:10.1038/35011545.
  • Smyth SJ, Gusta M, Belcher K, Phillips PWB, Castle D. Changes in herbicide use following the adoption of HR canola in Western Canada. Weed Technol. 2011;25:3(3):492–500. doi:10.1614/WT-D-10-00164.1.
  • Carpenter JE. Impact of GM crops on biodiversity. GM Crops Food. 2011;2:1(1):7–23. doi:10.4161/gmcr.2.1.15086.
  • Brookes G. Genetically modified crop use 1996-2020: impacts on carbon emissions. GM Crops Food. 2022a;13(1):242–61. Full article: Genetically Modified (GM) Crop Use 1996–2020: Impacts on Carbon Emissions (tandfonline.com). doi:10.1080/21645698.2022.2118495
  • Brookes G. Farm income and production impacts from the use of GM crop technology 1996-2020. 2022b. Full article: Farm income and production impacts from the use of genetically modified (GM) crop technology 1996-2020 (tandfonline.com). 10.1080/21645698.2022.2105626
  • National Geographic. Invasive species. National Geographic Society, Washington DC. 2022 [accessed 2032 Oct 12]. https://education.nationalgeographic.org/resource/invasive-species/.
  • United Nations Environmental Programme. Invasive alien species report. 2023 [accessed 2023 Oct 12]. https://www.unep.org/resources/report/invasive-alien-species-report.
  • Champer J, Buckman A, Akbari OS. Cheating evolution: engineering gene drives to manipulate the fate of wild populations. Nat Rev Genet. 2016;17(3):146–59. doi:10.1038/nrg.2015.34.
  • European Commission. Farm to fork strategy. 2020. [accessed 2023 Oct 12]. https://food.ec.europa.eu/horizontal-topics/farm-fork-strategy_en.
  • Lika E, Sutherland C, Gleim S, Smyth SJ. Quantifying changes in the environmental impact of herbicide use in Saskatchewan. Weed Technology; Forthcoming a.
  • Brookes G. Genetically modified crop use 1996-2020: environmental impacts associated with pesticide use change. GM Crops Food. 2022c;13(1). Full article: Genetically Modified (GM) Crop Use 1996–2020: Environmental Impacts Associated with Pesticide Use Change (tandfonline.com). doi:10.1080/21645698.2022.2118497
  • MNP. Implications of a total emissions reduction target on fertilizer. 2021 [accessed 2023 Dec 2] https://mma.prnewswire.com/media/1635963/Fertilizer_Canada_New_Report_Warns_of_Potential_for__48_Billion.pdf?p=original/.
  • Lika E, Sutherland C, Gleim S, Smyth SJ. Comparative study on fertilizer application trends in Saskatchewan and their implications. Plant Nutrition; Forthcoming b.
  • Nordhaus T, Shah S. In Sri Lanka, organic farming went catastrophically wrong – a nationwide experiment is abandoned after producing only misery. 2022. https://www.tbsnews.net.thoughts/sri-lanka-organic-farming-went-catastrophically-wrong-381010
  • Lebedev VG, Popova AA, Shestibratov KA. Genetic engineering and genome editing for improving nitrogen use efficiency in plants. Cells. 2021;10: 12(12):3303. doi:10.3390/cells10123303.
  • Miller H, Hefferon K. Reduce synthetic fertilizers and improve yields? The microbiome revolution comes to agriculture. Genetic Literary Project. August 23 2023.
  • Wen A, Havens KL, Bloch SE, Shah N, Higgins DA, Davis-Richardson AG, Sharon J, Rezaei F, Mohiti-Asli M, Johnson A, et al. enabling biological nitrogen fixation for cereal crops in fertilized fields. ACS Synth Biol. 2021;10(12):3264–77. doi:10.1021/acssynbio.1c00049.
  • Sutherland C, Gleim S, Smyth SJ. Correlating genetically modified crops, glyphosate use, and increased carbon sequestration. Sustainability. 2021;13(21):11679. doi:10.3390/su132111679.
  • Sathee L, Jagadhesan B, Pandesha PH, Barman D, Adavi BS, Nagar S, Krishna GK, Tripathi S, Jha SK, Chinnusamy V. Genome editing targets for improving nutrient use efficiency and nutrient stress adaptation. Front Genetics. 2022:13. doi:10.3389/fgene.2022.900897.
  • Głowacka K, Kromdijk J, Kucera K, Xie J, Cavanagh AP, Leonelli L, Leakey ADB, Ort DR, Niyogi KK, Long SP. Photosystem II subunit S overexpression increases the efficiency of water use in a field-grown crop. Nat Commun. 2018;9(1):868. doi:10.1038/s41467-018-03231-x.
  • Smyth SJ. Contributions of genome editing technologies towards improved nutrition, environmental sustainability and poverty reduction. Front. Genome Editing. 2022;4:1–9. doi:10.3389/fgeed.2022.863193.
  • Nature Biotechnol. Japan Embraces CRISPR-Edited Fish. Nature Biotechnol. 2021;40:10. doi:10.1038/s41587-021-01197-8.
  • Blix TB, Dalmo RA, Wargelius A, Myhr AI. Genome editing on finfish: current status and implications for sustainability. Revi Aquacult. 2021;13:4(4):2344–63. doi:10.1111/raq.12571.
  • Government of Canada. Mountain pine beetle. Natural Resources. 2022 [accessed 2023 Oct 17]. https://natural-resources.canada.ca/our-natural-resources/forests/wildland-fires-insects-disturbances/top-forest-insects-and-diseases-canada/mountain-pine-beetle/13381.
  • Blind K. The influence of regulation on innovation: a quantitative assessment for OECD countries. Research Policy. 2012;41:391–400. doi:10.1016/j.respol.2011.08.008.
  • Phillips P, Williams A (2023). A meta-analysis of GM crops regulatory approval costs. Johnson shoyama centre for the study of science and innovation policy working paper series 2023-1. Canada: University of Saskatchewan. https://www.schoolofpublicpolicy.sk.ca/csip/.
  • MacDougall P. The cost and time involved in the discovery, development and authorisation of a new plant biotechnology derived trait. 2011. Edinburgh (Scotland): Report for Crop Life International. Getting-a-Biotech-Crop-to-Market-Phillips-McDougall-Study.pdf(croplife.org).
  • Bayer J, Norton G, Falck-Zepeda J. Cost of compliance with biotechnology regulation in the Philippines: implications for developing countries. AgBioforum 2010.13:53-62 cost of compliance with biotechnology regulation in the. Philippines: Implications for Developing Countries – AgBioForum; 2010.
  • AgBioinvestor. Time and Cost to develop a new GM trait. 2022. Edinburgh (Scotland): Report for Crop Life International. AgbioInvestor-Trait-RD-Branded-Report-Final-20220512.pdf (croplife.org).
  • Smyth S, McDonald J, Falck-Zepeda J. Investment, regulation and uncertainty: managing new plant breeding techniques. GM Crops Food: biotechnol agric food chain. 2014;5(1):1–14. doi:10.4161/gmcr.27465.
  • Lassoued R, Phillips PWB, Smyth SJ, Hesseln H. Estimating the cost of regulating genome edited crops: expert judgment and overconfidence. GM Crops Food. 2019;10(1):44–62. doi:10.1080/21645698.2019.1612689.
  • Brookes G, Downes C. Can the EU regulatory environment help deliver food innovation? AgroFood Industry Hi Tech. 2017 July August;28(4):38–40. Drawing on the findings of a study undertaken for the EU specialty food ingredient industry association ‘Economic impact assessment for EU food related regulations on research, innovation and competitiveness in the food speciality sector. https://www.specialityfoodingredients.eu/uploads/news.documents/Brookes.innovation_report_June_2016.pdf
  • Kalaitzandonakes N, Giddings V, McHughen A, Zahringer K. The impact of asynchronous approvals for biotech crops on agricultural sustainability, trade and innovation. CAST Commentary QTO 2016/2 December 2016. QTA20162_Asynchronous_Approvals_Eng_1A2341477D0E2.pdf (cast-science.org). 2016.
  • Brookes G, Kayhan S. Economic impacts of the biosafety law and implementing regulations in Turkey on the Turkish importing and user sectors. Report (unpublished) for the United Soybean Board and the American Soybean Association-International Marketing. 2021. www.united-soybean.org
  • DG Agriculture, European Commission. Study on the implications of asynchronous GMO approvals for EU imports of animal feed products. 2010. Study executed by the Agricultural Economics Research Institute (LEI), Wageningen University, Economics and Management of Agrobiotechnology Center (EMAC), University of Missouri, and Plant Research Institute (PRI), Wageningen, Netherlands Study on the implications of asynchronous GMO approvals for EU imports of animal feed products - Publications Office of the EU (europa.eu)
  • Bertioli D, Miller H. The inhibition of innovation. CATO Institute. Washington DC: The Inhibition of Innovation | Cato Institute. Fall 2023.
  • Entine J, Felipe MSS, Groenewald J-H, Kershen DL, Lema M, McHughen A, Nepomuceno AL, Ohsawa R, Ordonio RL, Parrott WA, et al. Regulatory approaches for genome edited agricultural plants in select countries and jurisdictions around the world. Transgenic Res. 2021;3:e96. doi:10.1007/s11248-021-00257-8.
  • Kalaitzandonakes N, Willig C, Zahringer K. The economics and policy of genome editing in crop improvement. The Plant Genome. 2022;16(2):e20248. doi:10.1002/tpg2.20248.
  • Bullock D, Wilson W, Neadeau J. Gene editing versus genetic modification in the research and development of new crop traits: an economic comparison. Am J Eco. 2021;103(5):1700–19. doi:10.1111/ajae.12201.
  • Whelan A, Gutti P, Lema M. Gene editing regulation and innovation economics. Front Bioeng Biotechnol Policy Practice Rev. 2020 Apr;15(8):303. eCollection 2020. doi:10.3389/fbioe.2020.00303.