Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
655
Views
0
CrossRef citations to date
0
Altmetric
Research Article

ShF5H1 overexpression increases syringyl lignin and improves saccharification in sugarcane leaves

, , , , , , , , & ORCID Icon show all
Pages 67-84 | Received 21 Oct 2023, Accepted 26 Feb 2024, Published online: 20 Mar 2024

References

  • Pereira LFM, Ferreira VM, Oliveira NG, Sarmento PLVS, Endres L, Teodoro I. Sugars levels of four sugarcane genotypes in different stem portions during the maturation phase. An Acad Bras Cienc. 2017;89(2):1231–42. doi:10.1590/0001-3765201720160594.
  • de Souza AP, Grandis A, Leite DCC, Buckeridge MS. Sugarcane as a bioenergy source: history, performance, and perspectives for second-generation bioethanol. BioEnergy Res. 2014;7(1):24–35. doi:10.1007/s12155-013-9366-8.
  • Jung H-JG, Samac DA, Sarath G. Modifying crops to increase cell wall digestibility. Plant Sci. 2012a;185:65–77. doi:10.1016/j.plantsci.2011.10.014.
  • Heaton EA, Dohleman FG, Long SP. Meeting US biofuel goals with less land: the potential of miscanthus. Glob Chang Biol. 2008;14(9):2000–14. doi:10.1111/j.1365-2486.2008.01662.x.
  • Waclawovsky AJ, Sato PM, Lembke CG, Moore PH, Souza GM. Sugarcane for bioenergy production: an assessment of yield and regulation of sucrose content. Plant Biotechnol J. 2010;8(3):263–76. doi:10.1111/j.1467-7652.2009.00491.x.
  • Corrêa STR, Barbosa LC, Menandro LMS, Scarpare FV, Reichardt K, de Moraes LO, Hernandes TAD, Franco HCJ, Carvalho JLN. Straw removal effects on soil water dynamics, soil temperature, and sugarcane yield in South-Central Brazil. BioEnergy Res. 2019;12(4):749–63. doi:10.1007/s12155-019-09981-w.
  • Carvalho JLN, Menandro LMS, de Castro SGQ, Cherubin MR, de Oliveira Bordonal R, Barbosa LC, Gonzaga LC, Tenelli S, Franco HCJ, Kolln OT. et al. Multilocation straw removal effects on sugarcane yield in south-central Brazil. Bioenerg Res. 2019;12(4):813–29. doi:10.1007/s12155-019-10007-8.
  • Santos FA, de Queiróz JH, Colodette JL, Fernandes SA, Guimarães VM, Rezende ST. Potencial da palha de cana-de-açúcar para produção de etanol. Química Nova. 2012;35(5):1004–10. doi:10.1590/S0100-40422012000500025.
  • Boerjan W, Ralph J, Baucher M. Lignin biosynthesis. Annu Rev Plant Biol. 2003;54(1):519–46. doi:10.1146/annurev.arplant.54.031902.134938.
  • Pereira L, Domingues-Junior AP, Jansen S, Choat B, Mazzafera P. Is embolism resistance in plant xylem associated with quantity and characteristics of lignin? Trees. 2018;32(2):349–58. doi:10.1007/s00468-017-1574-y.
  • Polo CC, Pereira L, Mazzafera P, Flores-Borges DNA, Mayer JLS, Guizar-Sicairos M, Holler M, Barsi-Andreeta M, Westfahl H, Meneau F. Correlations between lignin content and structural robustness in plants revealed by X-ray ptychography. Sci Rep. 2020;10(1):1–11. doi:10.1038/s41598-020-63093-6.
  • Ragauskas AJ, Beckham GT, Biddy MJ, Chandra R, Chen F, Davis MF, Davison BH, Dixon RA, Gilna P, Keller M. et al. Lignin valorization: improving lignin processing in the biorefinery. Science. 2014;344(6185):344. doi:10.1126/science.1246843.
  • García JM, Silva MP, Simister R, McQueen-Mason SJ, Erazzú LE, Gomez LD, Acevedo A. Variability for cell-wall and yield components in commercial sugarcane (saccharum spp.) progeny: contrasts with parental lines and energy cane. J Crop Improv. 2022;36(6):769–88. doi:10.1080/15427528.2021.2011521.
  • Chapple C, Carpita N. Plant cell walls as targets for biotechnology. Curr Opin Plant Biol. 1998;1(2):179–85. doi:10.1016/S1369-5266(98)80022-8.
  • Fornalé S, Capellades M, Encina A, Wang K, Irar S, Lapierre C, Ruel K, Joseleau J-P, Berenguer J, Puigdomènech P. et al. Altered lignin biosynthesis improves cellulosic bioethanol production in transgenic maize plants down-regulated for cinnamyl alcohol dehydrogenase. Mol Plant. 2012;5(4):817–30. doi:10.1093/mp/ssr097.
  • Vanholme R, Demedts B, Morreel K, Ralph J, Boerjan W. Lignin biosynthesis and structure. Plant Physiol. 2010;153(3):895–905. doi:10.1104/pp.110.155119.
  • Vanholme R, Morreel K, Darrah C, Oyarce P, Grabber JH, Ralph J, Boerjan W. Metabolic engineering of novel lignin in biomass crops. New Phytol. 2012a;196(4):978–1000. doi:10.1111/j.1469-8137.2012.04337.x.
  • Vanholme R, Storme V, Vanholme B, Sundin L, Christensen JH, Goeminne G, Halpin C, Rohde A, Morreel K, Boerjan W. A systems biology view of responses to lignin biosynthesis perturbations in arabidopsis. Plant Cell. 2012b;24(9):3506–29. doi:10.1105/tpc.112.102574.
  • Ralph J, Hatfield RD, Quideau S, Helm RF, Grabber JH, Jung HJG. Pathway of p-coumaric acid incorporation into maize lignin as revealed by NMR. J Am Chem Soc. 1994;116(21):9448–9456. doi:10.1021/ja00100a006.
  • Takeda Y, Suzuki S, Tobimatsu Y, Osakabe K, Osakabe Y, Ragamustari SK, Sakamoto M, Umezawa T. Lignin characterization of rice CONIFERALDEHYDE 5-HYDROXYLASE loss-of-function mutants generated with the CRISPR/Cas9 system. Plant Journal. 2019a;97(3):543–54. doi:10.1111/tpj.14141.
  • Withers S, Lu F, Kim H, Zhu Y, Ralph J, Wilkerson CG. Identification of grass-specific enzyme that acylates monolignols with p-coumarate. J Biol Chem. 2012;287(11):8347–8355. doi:10.1074/jbc.M111.284497.
  • Simmons BA, Loqué D, Ralph J. Advances in modifying lignin for enhanced biofuel production. Curr Opin Plant Biol. 2010;13(3):312–19. doi:10.1016/j.pbi.2010.03.001.
  • Takeda Y, Tobimatsu Y, Yamamura M, Takano T, Sakamoto M, Umezawa T. Comparative evaluations of lignocellulose reactivity and usability in transgenic rice plants with altered lignin composition. J Wood Sci. 2019b;65(1):1–11. doi:10.1186/s10086-019-1784-6.
  • Ziebell A, Gracom K, Katahira R, Chen F, Pu Y, Ragauskas A, Dixon RA, Davis M. Increase in 4-coumaryl alcohol units during lignification in alfalfa (Medicago sativa) alters the extractability and molecular weight of lignin. J Biol Chem. 2010;285(50):38961–68. doi:10.1074/jbc.M110.137315.
  • Kiyota E, Mazzafera P, Sawaya ACHF. Analysis of soluble lignin in sugarcane by ultrahigh performance liquid chromatography-tandem mass spectrometry with a do-it-yourself oligomer database. Anal Chem. 2012;84:7015–20. doi:10.1021/ac301112y.
  • Hodgson-Kratky K, Papa G, Rodriguez A, Stavila V, Simmons B, Botha F, Furtado A, Henry R. Relationship between sugarcane culm and leaf biomass composition and saccharification efficiency. Biotechnol Biofuels. 2019;12(1):1–18. doi:10.1186/s13068-019-1588-3.
  • Papa G, Varanasi P, Sun L, Cheng G, Stavila V, Holmes B, Simmons BA, Adani F, Singh S. Exploring the effect of different plant lignin content and composition on ionic liquid pretreatment efficiency and enzymatic saccharification of Eucalyptus globulus L. mutants. Bioresour Technol. 2012;117:352–59. doi:10.1016/j.biortech.2012.04.065.
  • Selig MJ, Tucker MP, Sykes RW, Reichel KL, Brunecky R, Himmel ME, Davis MF, Decker SR. ORIGINAL RESEARCH: lignocellulose recalcitrance screening by integrated high-throughput hydrothermal pretreatment and enzymatic saccharification. Ind Biotechnol. 2010;6(2):104–11. doi:10.1089/ind.2010.0009.
  • Grabber JH. How do lignin composition, structure, and cross-linking affect degradability? A review of cell wall model studies. Crop Sci. 2005;45(3):820–31. doi:10.2135/cropsci2004.0191.
  • Huntley SK, Ellis D, Gilbert M, Chapple C, Mansfield SD. Significant increases in pulping efficiency in C4H-F5H-transformed poplars: improved chemical savings and reduced environmental toxins. J Agric Food Chem. 2003;51(21):6178–83. doi:10.1021/jf034320o.
  • Wu Z, Wang N, Hisano H, Cao Y, Wu F, Liu W, Bao Y, Wang Z-Y, Fu C. Simultaneous regulation of F5H in COMT-RNA i transgenic switchgrass alters effects of COMT suppression on syringyl lignin biosynthesis. Plant Biotechnol J. 2019;17(4):836–45. doi:10.1111/pbi.13019.
  • Humphreys JM, Hemm MR, Chapple C. New routes for lignin biosynthesis defined by biochemical characterization of recombinant ferulate 5-hydroxylase, a multifunctional cytochrome P450-dependent monooxygenase. Proc Natl Acad Sci USA. 1999;96(18):10045–50. doi:10.1073/pnas.96.18.10045.
  • Ferreira SS, Simões MS, Carvalho GG, de Lima LGA, de Almeida Svartman RM, Cesarino I. The lignin toolbox of the model grass Setaria viridis. Plant Mol Biol. 2019;101(3):235–55. doi:10.1007/s11103-019-00897-9.
  • Wagner A, Tobimatsu Y, Phillips L, Flint H, Geddes B, Lu F, Ralph J. Syringyl lignin production in conifers: proof of concept in a pine tracheary element system. Proc Natl Acad Sci USA. 2015;112(19):6218–23. doi:10.1073/pnas.1411926112.
  • Bewg WP, Poovaiah C, Lan W, Ralph J, Coleman HD. Rnai downregulation of three key lignin genes in sugarcane improves glucose release without reduction in sugar production. Biotechnol Biofuels. 2016;9(1):270. doi:10.1186/s13068-016-0683-y.
  • Fu C, Mielenz JR, Xiao X, Ge Y, Hamilton CY, Rodriguez M, Chen F, Foston M, Ragauskas A, Bouton J. et al. Genetic manipulation of lignin reduces recalcitrance and improves ethanol production from switchgrass. Proc Natl Acad Sci USA. 2011;108(9):3803–08. doi:10.1073/pnas.1100310108.
  • Jung JH, Altpeter F. TALEN mediated targeted mutagenesis of the caffeic acid O-methyltransferase in highly polyploid sugarcane improves cell wall composition for production of bioethanol. Plant Mol Biol. 2016;92(1–2):131–42. doi:10.1007/s11103-016-0499-y.
  • Jung JH, Kannan B, Dermawan H, Moxley GW, Altpeter F. Precision breeding for RNAi suppression of a major 4-coumarate: coenzyme a ligase gene improves cell wall saccharification from field grown sugarcane. Plant Mol Biol. 2016;92(4–5):505–17. doi:10.1007/s11103-016-0527-y.
  • Sundin L, Vanholme R, Geerinck J, Goeminne G, Höfer R, Kim H, Ralph J, Boerjan W. Mutation of the inducible ARABIDOPSIS THALIANA CYTOCHROME P450 REDUCTASE2 alters lignin composition and improves saccharification. Plant Physiol. 2014;166(4):1956–71. doi:10.1104/pp.114.245548.
  • Cai Y, Zhang K, Kim H, Hou G, Zhang X, Yang H, Feng H, Miller L, Ralph J, Liu C-J. Enhancing digestibility and ethanol yield of populus wood via expression of an engineered monolignol 4-O-methyltransferase. Nat Commun. 2016;7(1):1–14. doi:10.1038/ncomms11989.
  • Jung JH, Vermerris W, Gallo M, Fedenko JR, Erickson JE, Altpeter F. RNA interference suppression of lignin biosynthesis increases fermentable sugar yields for biofuel production from field-grown sugarcane. Plant Biotechnol J. 2013;11(6):709–16. doi:10.1111/pbi.12061.
  • Takeda Y, Koshiba T, Tobimatsu Y, Suzuki S, Murakami S, Yamamura M, Rahman MM, Takano T, Hattori T, Sakamoto M. et al. Regulation of coniferaldehyde 5-hydroxylase expression to modulate cell wall lignin structure in rice. Planta. 2017;246(2):337–49. doi:10.1007/s00425-017-2692-x.
  • Tetreault HM, Gries T, Palmer NA, Funnell-Harris DL, Sato S, Ge Z, Sarath G, Sattler SE. Overexpression of ferulate 5-hydroxylase increases syringyl units in sorghum bicolor. Plant Mol Biol. 2020;103(3):269–85. doi:10.1007/s11103-020-00991-3.
  • Shafiei R, Hooper M, McClellan C, Oakey H, Stephens J, Lapierre C, Tsuji Y, Goeminne G, Vanholme R, Boerjan W. et al. Downregulation of barley ferulate 5-hydroxylase dramatically alters straw lignin structure without impact on mechanical properties. Front Plant Sci. 2023;13:1125003. doi:10.3389/fpls.2022.1125003.
  • Chiang VL. Monolignol biosynthesis and genetic engineering of lignin in trees, a review. Environ Chem Lett. 2006;4(3):143–46. doi:10.1007/s10311-006-0067-9.
  • Pramod S, Saha T, Rekha K, Kishor PBK. Hevea brasiliensis coniferaldehyde-5-hydroxylase (HbCald5h) regulates xylogenesis, structure and lignin chemistry of xylem cell wall in Nicotiana tabacum. Plant Cell Rep. 2021;40(1):127–42. doi:10.1007/s00299-020-02619-8.
  • Xu Z, Zhang D, Hu J, Zhou X, Ye X, Reichel KL, Stewart NR, Syrenne RD, Yang X, Gao P. et al. Comparative genome analysis of lignin biosynthesis gene families across the plant kingdom. BMC Bioinf. 2009;10(S11):1. doi:10.1186/1471-2105-10-S11-S3.
  • Hoang NV, Furtado A, Botha FC, Simmons BA, Henry RJ. Potential for genetic improvement of sugarcane as a source of biomass for biofuels. Front Bioeng Biotechnol. 2015;3:182. doi:10.3389/fbioe.2015.00182.
  • Piperidis N, D’Hont A. Sugarcane genome architecture decrypted with chromosome-specific oligo probes. Plant Journal. 2020;103(6):2039–51. doi:10.1111/tpj.14881.
  • Bottcher A, Cesarino I, dos Santos AB, Vicentini R, Mayer JLS, Vanholme R, Morreel K, Goeminne G, Moura JCMS, Nobile PM. et al. Lignification in sugarcane: biochemical characterization, gene discovery, and expression analysis in two genotypes contrasting for lignin content. Plant Physiol. 2013;163(4):1539–57. doi:10.1104/pp.113.225250.
  • Llerena JPP, Figueiredo R, dos Santos Brito M, Kiyota E, Mayer JLS, Araujo P, Schimpl FC, Dama M, Pauly M, Mazzafera P. Deposition of lignin in four species of Saccharum. Sci Rep. 2019;9(1):1–19. doi:10.1038/s41598-019-42350-3.
  • Vicentini R, Bottcher A, dos Santos Brito M, dos Santos AB, Creste S, de Andrade Landell MG, Cesarino I, Mazzafera P, Amancio S. Large-scale transcriptome analysis of two sugarcane genotypes contrasting for lignin content. PLoS One. 2015;10(8):e0134909. doi:10.1371/journal.pone.0134909.
  • Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R. et al. Clustal W and Clustal X version 2.0. Bioinformatics. 2007;23(21):2947–2948. doi:10.1093/bioinformatics/btm404.
  • Whelan S, Goldman N. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Mol Biol Evol. 2001;18(5):691–99. doi:10.1093/oxfordjournals.molbev.a003851.
  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K, Battistuzzi FU. MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol. 2018;35(6):1547. doi:10.1093/molbev/msy096.
  • Jung JH, Fouad WM, Vermerris W, Gallo M, Altpeter F. Rnai suppression of lignin biosynthesis in sugarcane reduces recalcitrance for biofuel production from lignocellulosic biomass. Plant Biotechnol J. 2012b;10(9):1067–76. doi:10.1111/j.1467-7652.2012.00734.x.
  • Dermawan H, Karan R, Jung JH, Zhao Y, Parajuli S, Sanahuja G, Altpeter F. Development of an intragenic gene transfer and selection protocol for sugarcane resulting in resistance to acetolactate synthase-inhibiting herbicide. Plant Cell Tissue Organ Cult. 2016;126(3):459–68. doi:10.1007/s11240-016-1014-5.
  • Basso MF, da Cunha BADB, Ribeiro AP, Martins PK, de Souza WR, de Oliveira NG, Nakayama TJ, Das Chagas Noqueli Casari R, Santiago TR, Vinecky F. et al. Improved genetic transformation of sugarcane (saccharum spp.) embryogenic callus mediated by agrobacterium tumefaciens. CP Plant Biology. 2017;2(3):221–39. doi:10.1002/cppb.20055.
  • Dong S, Delucca P, Geijskes RJ, Mayo J, Ke K, Mai P, Sainz M, Caffall K, Moser T, Yarnall M. et al. Advances in Agrobacterium-mediated sugarcane transformation and stable transgene expression. Sugar Tech. 2014;16(4):366–71. others. doi:10.1007/s12355-013-0294-x.
  • Ramakers C, Ruijter JM, Deprez RHL, Moorman AFM. Assumption-free analysis of quantitative real-time polymerase chain reaction (PCR) data. Neurosci Lett. 2003;339(1):62–66. doi:10.1016/S0304-3940(02)01423-4.
  • Aljanabi SM, Forget L, Dookun A. An improved and rapid protocol for the isolation of polysaccharide-and polyphenol-free sugarcane DNA. Plant Mol Biol Report. 1999;17(3):281–281. doi:10.1023/A:1007692929505.
  • Chang S, Puryear J, Cairney J. A simple and efficient method for isolating RNA from pine trees. Plant Mol Biol Report. 1993;11(2):113–16. doi:10.1007/BF02670468.
  • Pfaffl MW. Relative expression software tool (Rest©) for group-wise comparison and statistical analysis of relative expression results in real-time PCR. Nucleic Acids Research. 2002;30(9):36e–36. doi:10.1093/nar/30.9.e36.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods. 2001;25(4):402–08. doi:10.1006/meth.2001.1262.
  • CONSECANA. Conselho dos Produtores de Cana-de, Açúcar, Açúcar e Álcool do Estado de São Paulo, Manual de Instruções. 5a ed. Piracicaba; 2006.
  • Hatfield R, Fukushima RS. Can lignin be accurately measured? Crop Sci. 2005;45(3):832–39. doi:10.2135/cropsci2004.0238.
  • Mokochinski JB, Bataglion GA, Kiyota E, de Souza LM, Mazzafera P, Sawaya ACHF. A simple protocol to determine lignin S/G ratio in plants by UHPLC-MS. Anal Bioanal Chem. 2015;407(23):7221–27. doi:10.1007/s00216-015-8886-9.
  • Chen L, Auh C, Chen F, Cheng X, Aljoe H, Dixon RA, Wang Z. Lignin deposition and associated changes in anatomy, enzyme activity, gene expression, and ruminal degradability in stems of tall fescue at different developmental stages. J Agric Food Chem. 2002;50(20):5558–65. doi:10.1021/jf020516x.
  • Brown L, Torget R. NREL analytical procedure: LAP009 enzymatic saccharification of lignocellulosic biomass hydrolysis. Natl Renew Energy Lab 1996.
  • DuBois M, Gilles KA, Hamilton JK, Rebers PA, Smith F. Colorimetric method for determination of sugars and related substances. Anal Chem. 1956;28(3):350–356. doi:10.1021/ac60111a017.
  • Torras-Claveria L, Jáuregui O, Codina C, Tiburcio AF, Bastida J, Viladomat F. Analysis of phenolic compounds by high-performance liquid chromatography coupled to electrospray ionization tandem mass spectrometry in senescent and water-stressed tobacco. Plant Sci. 2012;182:71–78. doi:10.1016/j.plantsci.2011.02.009.
  • Swain T, Hillis WE. The phenolic constituents of prunus domestica. I.—the quantitative analysis of phenolic constituents. J Sci Food Agric. 1959;10(1):63–68. doi:10.1002/jsfa.2740100110.
  • Johansen DA. Plant Microtechnique.,(McGraw-Hill book company. New York, NY, USA: Inc.; 1940.
  • StatSoft I. Statistica (version 10) data analysis software system. 2011.
  • Meyer K, Cusumano JC, Somerville C, Chapple CC. Ferulate-5-hydroxylase from Arabidopsis thaliana defines a new family of cytochrome P450-dependent monooxygenases. Proc Natl Acad Sci USA. 1996;93(14):6869–74. doi:10.1073/pnas.93.14.6869.
  • Li X, Ximenes E, Kim Y, Slininger M, Meilan R, Ladisch M, Chapple C. Lignin monomer composition affects Arabidopsis cell-wall degradability after liquid hot water pretreatment. Biotechnol Biofuels. 2010;3(1):1. doi:10.1186/1754-6834-3-27.
  • Xiong W, Wu Z, Liu Y, Li Y, Su K, Bai Z, Guo S, Hu Z, Zhang Z, Bao Y. et al. Mutation of 4-coumarate: coenzyme a ligase 1 gene affects lignin biosynthesis and increases the cell wall digestibility in maize brown midrib5 mutants. Biotechnol Biofuels. 2019;12(1):1–13. doi:10.1186/s13068-019-1421-z.
  • Meyer K, Shirley AM, Cusumano JC, Bell-Lelong DA, Chapple C. Lignin monomer composition is determined by the expression of a cytochrome P450-dependent monooxygenase in arabidopsis. Proc Natl Acad Sci USA. 1998;95(12):6619–23. doi:10.1073/pnas.95.12.6619.
  • de Souza WR, Pacheco TF, Duarte KE, Sampaio BL, de Oliveira Molinari PA, Martins PK, Santiago TR, Formighieri EF, Vinecky F, Ribeiro AP. et al. Silencing of a BAHD acyltransferase in sugarcane increases biomass digestibility. Biotechnol Biofuels. 2019;12(1):111. doi:10.1186/s13068-019-1450-7.
  • Kannan B, Jung JH, Moxley GW, Lee S-M, Altpeter F. TALEN-mediated targeted mutagenesis of more than 100 COMT copies/alleles in highly polyploid sugarcane improves saccharification efficiency without compromising biomass yield. Plant Biotechnol J. 2018;16(4):856–66. doi:10.1111/pbi.12833.
  • de Souza WR, Martins PK, Freeman J, Pellny TK, Michaelson LV, Sampaio BL, Vinecky F, Ribeiro AP, da Cunha BADB, Kobayashi AK. et al. Suppression of a single BAHD gene in Setaria viridis causes large, stable decreases in cell wall feruloylation and increases biomass digestibility. New Phytol. 2018;218(1):81–93. doi:10.1111/nph.14970.
  • Oliveira DM, Mota TR, Grandis A, de Morais GR, de Lucas RC, Polizeli MLTM, Marchiosi R, Buckeridge MS, Ferrarese-Filho O, dos Santos WD. Lignin plays a key role in determining biomass recalcitrance in forage grasses. Renewable Energy. 2020;147:2206–17. doi:10.1016/j.renene.2019.10.020.
  • Moutta RDO, Ferreira-Leitão VS, Bon EPDS. Enzymatic hydrolysis of sugarcane bagasse and straw mixtures pretreated with diluted acid. Biocatal Biotransformation. 2014;32(1):93–100. doi:10.3109/10242422.2013.873795.
  • Pereira SC, Maehara L, Machado CMM, Farinas CS. 2G ethanol from the whole sugarcane lignocellulosic biomass. Biotechnol Biofuels. 2015;8(1):1–16. doi:10.1186/s13068-015-0224-0.
  • Hall M, Bansal P, Lee JH, Realff MJ, Bommarius AS. Cellulose crystallinity–a key predictor of the enzymatic hydrolysis rate. FEBS J. 2010;277(6):1571–82. doi:10.1111/j.1742-4658.2010.07585.x.
  • Casler MD, Jung H-JG. Relationships of fibre, lignin, and phenolics to in vitro fibre digestibility in three perennial grasses. Anim Feed Sci Technol. 2006;125(1–2):151–61. doi:10.1016/j.anifeedsci.2005.05.015.
  • Mason PJ, Furtado A, Marquardt A, Hodgson-Kratky K, Hoang NV, Botha FC, Papa G, Mortimer JC, Simmons B, Henry RJ. Variation in sugarcane biomass composition and enzymatic saccharification of leaves, internodes and roots. Biotechnol Biofuels. 2020;13(1):1–19. doi:10.1186/s13068-020-01837-2.
  • Stewart JJ, Akiyama T, Chapple C, Ralph J, Mansfield SD. The effects on lignin structure of overexpression of ferulate 5-hydroxylase in hybrid poplar1. Plant Physiol. 2009;150(2):621–35. doi:10.1104/pp.109.137059.
  • Del Río JC, Lino AG, Colodette JL, Lima CF, Gutiérrez A, Martínez ÁT, Lu F, Ralph J, Rencoret J. Differences in the chemical structure of the lignins from sugarcane bagasse and straw. Biomass Bioenerg. 2015;81:322–38. doi:10.1016/j.biombioe.2015.07.006.