Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
813
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Cloning and functional analysis of ZmMADS42 gene in maize

, , , , , , , & show all
Pages 105-117 | Received 14 Jan 2024, Accepted 05 Mar 2024, Published online: 11 Mar 2024

References

  • Prasanna BM. Diversity in global maize germplasm: characterization and utilization. J Biosci. 2012;37(5):843–55. doi:10.1007/s12038-012-9227-1.
  • Moon J, Suh S-S, Lee H, Choi K-R, Hong CB, Paek N-C, Kim S-G, Lee I. The SOC1 MADS-box gene integrates vernalization and gibberellin signals for flowering in Arabidopsis. Plant Journal. 2003;35(5):613–23. doi:10.1046/j.1365-313x.2003.01833.x.
  • D’Aloia M, Bonhomme D, Bouché F, Tamseddak K, Ormenese S, Torti S, Coupland G, Périlleux C. Cytokinin promotes flowering of Arabidopsis via transcriptional activation of the FT paralogue TSF. The Plant Journal. 2011;65(6):972–79. doi:10.1111/j.1365-313X.2011.04482.x.
  • Domagalska MA, Schomburg FM, Amasino RM, Vierstra RD, Nagy F, Davis SJ. Attenuation of brassinosteroid signaling enhances FLC expression and delays flowering. Dev (Cambridge, England). 2007;134(15):2841–50. doi:10.1242/dev.02866.
  • Lee JH, Yoo SJ, Park SH, Hwang I, Lee JS, Ahn JH. Role of SVP in the control of flowering time by ambient temperature in Arabidopsis. Genes Dev. 2007;21(4):397–402. doi:10.1101/gad.1518407.
  • Zhang Q, Zhang M, Zhao Y-Q, Hu H, Huang Y-X, Jia G-X. Identification of trehalose-6-phosphate synthase (TPS)-coding genes involved in flowering induction of Lilium× formolongi. Plant Physiol Biochem: PPB. 2022;171:84–94. doi:10.1016/j.plaphy.2021.12.025.
  • Parenicová L, de Folter S, Kieffer M, Horner DS, Favalli C, Busscher J, Cook HE, Ingram RM, Kater MM, Davies B. et al. Molecular and phylogenetic analyses of the complete MADS-box transcription factor family in Arabidopsis: new openings to the MADS world. Plant Cell. 2003;15(7):1538–51. doi:10.1105/tpc.011544.
  • JIANG S-C. et al. Analysis of MIKCC− type MADS-box gene family in Gossypium hirsutum. J Integr Agric. 2014;13(6):1239–49.
  • Theissen G. Development of floral organ identity: stories from the MADS house. Curr Opin Plant Biol. 2001;4(1):75–85. doi:10.1016/s1369-5266(00)00139-4.
  • Lai X, Daher H, Galien A, Hugouvieux V, Zubieta C. Structural Basis for Plant MADS Transcription Factor Oligomerization. Comput Struct Biotechnol J. 14 Jun. 2019;17:946–53. doi:10.1016/j.csbj.2019.06.014.
  • Zhang Y, Tang D, Lin X, Ding M, Tong Z. Genome-wide identification of MADS-box family genes in moso bamboo (Phyllostachys edulis) and a functional analysis of PeMADS5 in flowering. BMC Plant Biol. 3 Sep. 2018;18(1):176. doi:10.1186/s12870-018-1394-2.
  • Zhang J, Zhang Z, Zhang R. Type I MADS-box transcription factor TaMADS-GS regulates grain size by stabilizing cytokinin signalling during endosperm cellularization in wheat. Plant Biotechnol J. 2024;22(1): 200–15. doi:10.1111/pbi.14180.
  • Liu E, Zhu S, Du M, Lyu H, Zeng S, Liu Q, Wu G, Jiang J, Dang X, Dong Z. et al. LAX1, functioning with MADS-box genes, determines normal palea development in rice. Gene. 2023;883:147635. doi:10.1016/j.gene.2023.147635.
  • Michaels SD, Amasino RM. FLOWERING LOCUS C encodes a novel MADS domain protein that acts as a repressor of flowering. Plant Cell. 1999;11(5):949–56. doi:10.1105/tpc.11.5.949.
  • Luo X, Liu B, Xie L, Wang K, Xu D, Tian X, Xie L, Li L, Ye X, He Z. et al. The TaSOC1-TaVRN1 module integrates photoperiod and vernalization signals to regulate wheat flowering. Plant Biotechnol J. 2023 Nov 8;22(3):635–49. doi:10.1111/pbi.14211.
  • Portereiko MF, Lloyd A, Steffen JG, Punwani JA, Otsuga D, Drews GN. Drews. AGL80 is required for central cell and endosperm development in Arabidopsis. Plant Cell. 2006;18(8):1862–72. doi:10.1105/tpc.106.040824.
  • Bemer M, Wolters-Arts M, Angenent GGC, Angenent GC. The MADS domain protein DIANA acts together with AGAMOUS-LIKE80 to specify the central cell in Arabidopsis ovules. Plant Cell. 2008;20(8):2088–101. doi:10.1105/tpc.108.058958.
  • Qiao Z, Qi W, Wang Q, Feng Y, Yang Q, Zhang N, Wang S, Tang Y, Song R. ZmMADS47 regulates Zein Gene transcription through interaction with Opaque2. PloS Genet. 2016 Apr 14;12(4):e1005991. doi:10.1371/journal.pgen.1005991.
  • Steffen JG, Kang I-H, Portereiko MF, Lloyd A, Drews GN. AGL61 interacts with AGL80 and is required for central cell development in arabidopsis. Plant Physiol. 2008;148(1):259–68. doi:10.1104/pp.108.119404.
  • Schreiber DN, Bantin J, Dresselhaus T. The MADS-box transcription factor ZmMADS2 is required for anther and pollen maturation in maize and accumulates in apoptotic bodies during anther dehiscence. Plant Physiol. 2004;134(3):1069–79. doi:10.1104/pp.103.030577.
  • Sun H, Wang C, Chen X, Liu H, Huang Y, Li S, Dong Z, Zhao X, Tian F, Jin W. dlf1 promotes floral transition by directly activating ZmMADS4 and ZmMADS67 in the maize shoot apex. New Phytol. 2020;228(4):1386–400. doi:10.1111/nph.16772.
  • Smaczniak C, Immink RGH, Angenent GC, Kaufmann K. Developmental and evolutionary diversity of plant MADS-domain factors: insights from recent studies. Dev (Cambridge, England). 2012;139(17):3081–98. doi:10.1242/dev.074674.
  • Li Y-X, Li C, Bradbury PJ, Liu X, Lu F, Romay CM, Glaubitz JC, Wu X, Peng B, Shi Y. et al. Identification of genetic variants associated with maize flowering time using an extremely large multi-genetic background population. Plant Journal. 2016;86(5):391–402. doi:10.1111/tpj.13174.
  • Dai Y, Wang Y, Zeng L, Jia R, He L, Huang X, Zhao H, Liu D, Zhao H, Hu S. et al. Genomic and transcriptomic insights into the evolution and divergence of MIKC-Type MADS-Box genes in Carica papaya. Int J Mol Sci. 13 Sep. 2023;24(18):18 14039. doi:10.3390/ijms241814039.
  • Vielba JM, Rico S, Sevgin N, Castro-Camba R, Covelo P, Vidal N, Sánchez C. Transcriptomics analysis reveals a putative role for hormone signaling and MADS-Box genes in mature chestnut shoots rooting recalcitrance. Plants (Basel, Switzerland). 2022 Dec 13;11(24):3486. doi:10.3390/plants11243486.
  • Alter P, Bircheneder S, Zhou L-Z, Schlüter U, Gahrtz M, Sonnewald U, Dresselhaus T. Flowering time-regulated genes in maize include the transcription factor ZmMADS1. Plant Physiol. 2016;172(1):389–404. doi:10.1104/pp.16.00285.
  • Hu Y, Liang W, Yin C, Yang X, Ping B, Li A, Jia R, Chen M, Luo Z, Cai Q. et al. Interactions of OsMADS1 with floral homeotic genes in rice flower development. Mol Plant. 2015;8(9):1366–84. doi:10.1016/j.molp.2015.04.009.
  • Lee H, Suh S-S, Park E, Cho E, Ahn JH, Kim S-G, Lee JS, Kwon YM, Lee I. The AGAMOUS-LIKE 20 MADS domain protein integrates floral inductive pathways in arabidopsis. Genes Dev. 2000;14(18):2366–76. doi:10.1101/gad.813600.
  • Lee J, Lee I. Regulation and function of SOC1, a flowering pathway integrator. J Exp Bot. 2010;61(9):2247–54. doi:10.1093/jxb/erq098.
  • Lee S, Kim J, Han J-J, Han M-J, An G. Functional analyses of the flowering time gene OsMADS50, the putative SUPPRESSOR of OVEREXPRESSION of CO 1/AGAMOUS-LIKE 20 (SOC1/AGL20) ortholog in rice. Plant Journal. 2004;38(5):754–64. doi:10.1111/j.1365-313X.2004.02082.x.
  • Ryu CH, Lee S, Cho LH, Kim SL, Lee YS, Choi SC, Jeong HJ, Yi J, Park SJ, Han CD. et al. OsMADS50 and OsMADS56 function antagonistically in regulating long day (LD)-dependent flowering in rice. Plant, Cell Environ. 2009;32(10):1412–27. doi:10.1111/j.1365-3040.2009.02008.x.
  • Hou D, Li L, Ma T, Pei J, Zhao Z, Lu M, Wu A, Lin X. The SOC1-like gene BoMADS50 is associated with the flowering of Bambusa oldhamii. Horticul Res. 1 Jun. 2021;8(1):133. doi:10.1038/s41438-021-00557-4.
  • Song G-Q, Han X, Ryner JT, Thompson A, Wang K. Utilizing MIKC-type MADS-box protein SOC1 for yield potential enhancement in maize. Plant Cell Rep. 2021;40(9):1679–93. doi:10.1007/s00299-021-02722-4.
  • Pelaz S, Ditta GS, Baumann E, Wisman E, Yanofsky MF. B and C floral organ identity functions require SEPALLATA MADS-box genes. Nature. 2000;405(6783):200–03. doi:10.1038/35012103.
  • Bramsiepe J, Krabberød AK, Bjerkan KN, Alling RM, Johannessen IM, Hornslien KS, Miller JR, Brysting AK, Grini PE. Structural evidence for MADS-box type I family expansion seen in new assemblies of Arabidopsis arenosa and A. lyrata. Plant Journal. 2023;116(3):942–61. doi:10.1111/tpj.16401.
  • Dreni L. The ABC of flower development in monocots: the model of Rice Spikelet. Methods Mol Biol. 2023;2686:59–82. doi:10.1007/978-1-0716-3299-4_3.
  • Kong X, Wang F, Geng S, Guan J, Tao S, Jia M, Sun G, Wang Z, Wang K, Ye X. et al. The wheat AGL6-like MADS-box gene is a master regulator for floral organ identity and a target for spikelet meristem development manipulation. Plant Biotechnol J. 2022;20(1):75–88. doi:10.1111/pbi.13696.
  • Thompson BE, Bartling L, Whipple C, Hall DH, Sakai H, Schmidt R, Hake S. bearded-ear encodes a MADS-box transcription factor critical for maize floral development. Plant Cell. 2009;21(9):2578–90. doi:10.1105/tpc.109.067751.
  • Yadav SR, Khanday, I, Majhi, Bb, Veluthambi, K, Vijayraghavan, U. Auxin-responsive OsMGH3, a common downstream target of OsMADS1 and OsMADS6, controls rice floret fertility. Plant Cell Physiol. 2011;52(12):2123–35. doi:10.1093/pcp/pcr142.
  • Zhang J, Nallamilli BR, Mujahid H, Peng Z. OsMADS6 plays an essential role in endosperm nutrient accumulation and is subject to epigenetic regulation in rice (Oryza sativa). The Plant Journal. 2010;64(4):604–17. doi:10.1111/j.1365-313X.2010.04354.x.
  • Adamczyk BJ, Lehti‐Shiu MD, Fernandez DE. The MADS domain factors AGL15 and AGL18 act redundantly as repressors of the floral transition in Arabidopsis. The Plant Journal. 2007;50(6):1007–19. doi:10.1111/j.1365-313X.2007.03105.x.
  • Vrebalov J, Ruezinsky D, Padmanabhan V, White R, Medrano D, Drake R, Schuch W, Giovannoni J. A MADS-box gene necessary for fruit ripening at the tomato ripening-inhibitor (rin) locus. Science. 2002;296(5566):343–46. doi:10.1126/science.1068181.
  • Wang S, Lu G, Hou Z, Luo Z, Wang T, Li H, Zhang J, Ye Z. Members of the tomato FRUITFULL MADS-box family regulate style abscission and fruit ripening. J Exp Bot. 2014;65(12):3005–14. doi:10.1093/jxb/eru137.
  • Han X, Wang D, Song G-Q. Expression of a maize SOC1 gene enhances soybean yield potential through modulating plant growth and flowering. Sci Rep. 2021 Jun 17;11(1):12758. doi:10.1038/s41598-021-92215-x.
  • Zhang A, He H, Li Y, Wang L, Liu Y, Luan X, Wang J, Liu H, Liu S, Zhang J. et al. MADS-Box subfamily gene GmAP3 from glycine max regulates early flowering and flower development. Int J Mol Sci. 1 Feb. 2023;24(3):3 2751. doi:10.3390/ijms24032751.