Publication Cover
GM Crops & Food
Biotechnology in Agriculture and the Food Chain
Volume 15, 2024 - Issue 1
612
Views
0
CrossRef citations to date
0
Altmetric
Research Paper

Impacts of AlaAT3 transgenic poplar on rhizosphere soil chemical properties, enzyme activity, bacterial community, and metabolites under two nitrogen conditions

, , , , , & show all
Pages 1-15 | Received 10 Jan 2024, Accepted 02 Apr 2024, Published online: 16 Apr 2024

References

  • Lebedev V, Lebedeva T, Tikhonova E, Shestibratov K. Assessing impacts of transgenic plants on soil using functional indicators: twenty years of research and perspectives. Plants. 2022;11(18):2439. doi:10.3390/plants11182439.
  • Srivastava DK, Thakur AK, Kumar P. Agricultural biotechnology: latest research and trends. US: Springer; 2021.
  • Guan Z, Lu S-B, Huo Y-L, Guan Z-P, Liu B, Wei W. Do genetically modified plants affect adversely on soil microbial communities? Agric Ecosyst Environ. 2016;235:289–305. doi:10.1016/j.agee.2016.10.026.
  • Qiu D, Vuong T, Valliyodan B, Shi H, Guo B, Shannon JG, Nguyen HT. Identification and characterization of a stachyose synthase gene controlling reduced stachyose content in soybean. Theor Appl Genet. 2015;128(11):2167–76. doi:10.1007/s00122-015-2575-0.
  • Faragová N, Gottwaldová K, Faragó J. Effect of transgenic alfalfa plants with introduced gene for Alfalfa Mosaic virus coat protein on rhizosphere microbial community composition and physiological profile. Biologia. 2011;66(5):768–77. doi:10.2478/s11756-011-0082-6.
  • Quemada H. Lessons learned from the introduction of genetically engineered crops: relevance to gene drive deployment in Africa. Transgenic Res. 2022;31(3):285–311. doi:10.1007/s11248-022-00300-2.
  • Chen Z, Wei K, Chen L, Wu Z, Luo J, Cui J. Effects of the consecutive cultivation and periodic residue incorporation of Bacillus thuringiensis (Bt) cotton on soil microbe-mediated enzymatic properties. Agric Ecosyst Environ. 2017;239:154–60. doi:10.1016/j.agee.2017.01.017.
  • Chen Z, Chen L, Wu ZJ. Relationships among persistence of Bacillus thuringiensis and Cowpea trypsin inhibitor proteins, microbial properties and enzymatic activities in rhizosphere soil after repeated cultivation with transgenic cotton. Appl Soil Ecol. 2012;53:23–30. doi:10.1016/j.apsoil.2011.10.019.
  • Wei HW, Movahedi A, Liu G, Kiani-Pouya A, Rasouli F, Yu C, Chen Y, Zhong F, Zhang J. Effects of field-grown transgenic Cry1Ah1 poplar on the rhizosphere microbiome. Res Sq. 2022. doi:10.21203/rs.3.rs-78068/v2.
  • Wang G, Jin Z, Wang X, George TS, Feng G, L Zhang. Simulated root exudates stimulate the abundance of Saccharimonadales to improve the alkaline phosphatase activity in maize rhizosphere. Appl Soil Ecol. 2022;170:104274. doi:10.1016/j.apsoil.2021.104274.
  • Łukaszkiewicz J, Długoński A, Fortuna-Antoszkiewicz B, Fialová J. The potential of poplars (Populus L.) for the sustainable environment of cities. Preprints. 2024. doi:10.20944/preprints202402.1542.v1.
  • Parsons TJ, Sinkar VP, Stettler RF, Nester EW, Gordon MP. Transformation of poplar by Agrobacterium tumefaciens. Bio/Technology. 1986;4(6):533–36. doi:10.1038/nbt0686-533.
  • Hu J-Q, Qi Q, Zhao Y-L, Tian X-M, Lu H, Gai Y, Jiang X-N. Unraveling the impact of Pto4CL1 regulation on the cell wall components and wood properties of perennial transgenic populus tomentosa. Plant Physiol Bioch. 2019;139:672–80. doi:10.1016/j.plaphy.2019.03.035.
  • Movahedi A, Zhang J, Gao P, Yang Y, Wang L, Yin T, Kadkhodaei S, Ebrahimi M, Zhuge Q. Expression of the chickpea CarNAC3 gene enhances salinity and drought tolerance in transgenic poplars. Plant Cell Tissue Organ Cult. 2015;120(1):141–54. doi:10.1007/s11240-014-0588-z.
  • Ren Y, Zhang J, Liang H, Wang J, Yang M. Inheritance and expression stability of exogenous genes in insect-resistant transgenic poplar. Plant Cell Tiss Organ Cult. 2017;130(3):567–76. doi:10.1007/s11240-017-1247-y.
  • Yang Y, Tang RJ, Jiang CM, Li B, Kang T, Liu H, Zhao N, Ma X-J, Yang L, Chen S-L, Zhang H-X. Overexpression of the P tSOS2 gene improves tolerance to salt stress in transgenic poplar plants. Plant Biotechnol J. 2015;13(7):962–73. doi:10.1111/pbi.12335.
  • Li P, Ye S, Liu H, Pan A, Ming F, Tang X. Cultivation of drought-tolerant and insect-resistant rice affects soil bacterial, but not fungal, abundances and community structures. Front Microbiol. 2018;9:1390. doi:10.3389/fmicb.2018.01390.
  • Peña PA, Quach T, Sato S, Ge Z, Nersesian N, Dweikat IM, Soundararajan M, Clemente T. Molecular and phenotypic characterization of transgenic wheat and sorghum events expressing the barley alanine aminotransferase. Planta. 2017;246(6):1097–107. doi:10.1007/s00425-017-2753-1.
  • Good A, Johnson S, de Pauw M, Carroll R, Savidov N, Vidmar J, Lu Z, Taylor G, Stroeher V. Engineering nitrogen use efficiency with alanine aminotransferase. Can J Bot. 2007;85(3):252–62. doi:10.1139/b07-019.
  • K SA, T CR, M D, Taylor GJ, Good AG. Genetic engineering of improved nitrogen use efficiency in rice by the tissue‐specific expression of alanine aminotransferase. Plant Biotechnol J. 2008;6(7):722–32. doi:10.1111/j.1467-7652.2008.00351.x.
  • Snyman SJ, Hajari E, Watt MP, Lu Y, Kridl JC. Improved nitrogen use efficiency in transgenic sugarcane: phenotypic assessment in a pot trial under low nitrogen conditions. Plant Cell Rep. 2015;34(5):667–69. doi:10.1007/s00299-015-1768-y.
  • McAllister CH, Good AG. Alanine aminotransferase variants conferring diverse NUE phenotypes in Arabidopsis thaliana. PLoS One. 2015;10(4):e0121830. doi:10.1371/journal.pone.0121830.
  • Hewitt EJ. Sand and culture methods used in the study of plant nutrition. Soil Sci. 1966;75(1):x+241:202–32. doi: 10.1097/00010694-195301000-00019.
  • Bao S. Soil and agricultural chemistry analysis. US: China agriculture press; 2000.
  • Walkley A, Black IA. An examination of Degtjareff method of determining soil organic matter and proposed modification of the method of the chromic acid titration method. Soil Sci. 1934;37(1):29–39. doi:10.1097/00010694-193401000-00003.
  • Huse SM, Dethlefsen L, Huber JA, Welch DM, Relman DA, Sogin ML. Exploring microbial diversity and taxonomy using SSU rRNA hypervariable tag sequencing. PLoS Genet. 2008;4(11):e1000255. doi:10.1371/journal.pgen.1000255.
  • Chen S, Zhou Y, Chen Y, Gu J. Fastp: an ultra-fast all-in-one FASTQ preprocessor. Bioinformatics. 2018;34(17):i884–90. doi:10.1093/bioinformatics/bty560.
  • Magoč T, Salzberg SL. FLASH: fast length adjustment of short reads to improve genome assemblies. Bioinformatics. 2011;27(21):2957–63. doi:10.1093/bioinformatics/btr507.
  • Edgar RC. UPARSE: highly accurate OTU sequences from microbial amplicon reads. Nat Methods. 2013;10(10):996–98. doi:10.1038/nmeth.2604.
  • Qi Y, Wang Q, Xie Q, Wu C, Xu M, Han S, Zhou T, Li J, Xia L, Li WC, Pan W. Safety evaluation of FAD2 RNAi transgenic Brassica napus L. based on microbial diversity and metabonomic analysis. Front Plant Sci. 2022;13:953476. doi:10.3389/fpls.2022.953476.
  • Wang K, Liu M, Cai C, Cai S, Ma X, Lin C, Zhu Q. The impact of genetic modified Ma bamboo on soil microbiome. Front Microbiol. 2022;13:1025786. doi:10.3389/fmicb.2022.1025786.
  • Want EJ, Wilson ID, Gika H, Theodoridis G, Plumb RS, Shockcor J, Holmes E, Nicholson JK. Global metabolic profiling procedures for urine using UPLC–MS. Nat Protoc. 2010;5(6):1005–18. doi:10.1038/nprot.2010.50.
  • Smith CA, Want EJ, O’Maille G, Abagyan R, Siuzdak G. XCMS: processing mass spectrometry data for metabolite profiling using nonlinear peak alignment, matching, and identification. Anal Chem. 2006;78(3):779–87. doi:10.1021/ac051437y.
  • Xu X, Liu X, Li F, Hao C, Sun H, Yang S, Jiao Y, Lu X. Impact of insect-resistant transgenic maize 2A-7 on diversity and dynamics of bacterial communities in Rhizosphere soil. Plants. 2023;12(10):2046. doi:10.3390/plants12102046.
  • Rennenberg H, Wildhagen H, Ehlting B. Nitrogen nutrition of poplar trees. Plant Biol. 2010;12(2):275–91. doi:10.1111/j.1438-8677.2009.00309.x.
  • Delgado A, Gómez JA. The soil. Physical, chemical and biological properties. Princip Agron Sustain Agricul. 2016;15–26. doi:10.1007/978-3-319-46116-8_2.
  • Ahamd M, Abbasi WM, Jamil M, Iqbal M, Hussain A, Akhtar MF-Z, Nazli F. Comparison of rhizosphere properties as affected by different Bt-and non-Bt-cotton (Gossypium hirsutum L.) genotypes and fertilization. Environ Monit Assess. 2017;189(6):1–10. doi:10.1007/s10661-017-5994-3.
  • Yang S, Liu X, Xu X, Sun H, Li F, Hao C, Lu X. Effects of insect-resistant Maize 2A-7 expressing mCry1ab and mCry2ab on the soil ecosystem. Plants. 2022;11(17):2218. doi:10.3390/plants11172218.
  • Du J, Hou F, Zhou Q. Response of soil enzyme activity and soil bacterial community to PCB dissipation across different soils. Chemosphere. 2021;283:131229. doi:10.1016/j.chemosphere.2021.131229.
  • Liang J, Xin L, Luan Y, Song X, Zhang ZG. Effect of Cry1Ie Bt maize on carbon source metabolism of rhizosphere microorganisms. J Agric Sci Technol. 2019;21:104–10. doi:10.13304/j.nykjdb.2018.0133.
  • Li K, Wang C, Ow DW. Root microbiome changes associated with cadmium exposure and/or overexpression of a transgene that reduces Cd content in rice. Ecotox Environ Safe. 2022;237:113530. doi:10.1016/j.ecoenv.2022.113530.
  • Yang MK, Luo FH, Song YC, Ma SL, Ma YD, Fazal A, Yin T, Lu G, Sun S, Qi J, Wen Z, Li Y, Yang Y. The host niches of soybean rather than genetic modification or glyphosate application drive the assembly of root-associated microbial communities. Microb Biotechnol. 2022;15(12):2942–57. doi:10.1111/1751-7915.14164.
  • Greenfield LM, Hill PW, Seaton FM, Paterson E, Baggs EM, Jones DL. Is soluble protein mineralisation and protease activity in soil regulated by supply or demand? Soil Biol Biochem. 2020;150:108007. doi:10.1016/j.soilbio.2020.108007.
  • Wu N, Shi W, Liu W, Gao Z, Han L, Wang X. Differential impact of Bt-transgenic rice plantings on bacterial community in three niches over consecutive years. Ecotox Environ Safe. 2021;223:112569. doi:10.1016/j.ecoenv.2021.112569.
  • Fang M, Kremer RJ, Motavalli PP, Davis G. Bacterial diversity in rhizospheres of nontransgenic and transgenic corn. Appl Environ Microbiol. 2005;71(7):4132–36. doi:10.1128/aem.71.7.4132-4136.2005.
  • Pack IS, Heo JH, Kim DY, Cho HJ, Oh S-D, Lee S-K, Suh E-J, Kim C-G. Bacterial communities associated with the rhizosphere of transgenic chrysanthemum. Singmul Hakhoe Chi. 2023;66(3):257–68. doi:10.1007/s12374-023-09392-7.
  • Zhao X, Jiang Y, Liu Q, Yang H, Wang Z, Zhang M. Effects of drought-tolerant Ea-DREB2B transgenic sugarcane on bacterial communities in soil. Front Microbiol. 2020;11:704. doi:10.3389/fmicb.2020.00704.
  • Ibarra JG, Colombo RP, Godeas AM, López NI. Analysis of soil bacterial communities associated with genetically modified drought-tolerant corn. Appl Soil Ecol. 2020;146:103375. doi:10.1016/j.apsoil.2019.103375.
  • Sohn S-I, Oh Y-J, Kim B-Y, Cho HS. Effects of CaMSRB2-expressing transgenic rice cultivation on soil microbial communities. J Microbiol Biotechnol. 2016;26(7):1303–10. doi:10.4014/jmb.1601.01058.
  • Colombo RP, Ibarra JG, Bidondo LF, Silvani VA, Bompadre MJ, Pergola M, Lopez NI, Godeas AM. Arbuscular mycorrhizal fungal association in genetically modified drought‐tolerant corn. J Environ Qual. 2017;46(1):227–31. doi:10.2134/jeq2016.04.0125.
  • Chialva M, De Rose S, Novero M, Lanfranco L, Bonfante P. Plant genotype and seasonality drive fine changes in olive root microbiota. Curr Plant Biol. 2021;28:100219. doi:10.1016/j.cpb.2021.100219.
  • Sun C, Jin L, Cai Y, Huang Y, Zheng X, Yu T. L-Glutamate treatment enhances disease resistance of tomato fruit by inducing the expression of glutamate receptors and the accumulation of amino acids. Food Chem. 2019;293:263–70. doi:10.1016/j.foodchem.2019.04.113.
  • Wei B, Zhang J, Wen R, Chen T, Xia N, Liu Y, Wang Z. Genetically modified sugarcane intercropping soybean impact on rhizosphere bacterial communities and co-occurrence patterns. Front Microbiol. 2021;12:742341. doi:10.3389/fmicb.2021.742341.