1,300
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Properties of pavement quality concrete prepared with coarse RAP containing different percentages of asphalt

, , &
Article: 2154257 | Received 21 Sep 2022, Accepted 29 Nov 2022, Published online: 15 Dec 2022

References

  • Abed, A., Thom, N., & Lo Presti, D. (2018). Design considerations of high RAP-content asphalt produced at reduced temperatures. Materials Structural, 51(4), 91. https://doi.org/10.1617/s11527-018-1220-1
  • ACI-318. (2014). Building code requirements for structural concrete: (ACI 318-14). Farmington, MI: American Concrete Institute.
  • Al-Oraimi, S., Hassan, H. F., & Hago, A. (2009). Recycling of reclaimed asphalt pavement in Portland cement concrete. Journal of Engineering Research, 6(1), 37–27. https://doi.org/10.24200/tjer.vol6iss1pp37-45
  • ASTM. (2013). Standard test method for determining potential resistance to degradation of pervious concrete by impact and Abrasion. ASTM C1747/C1747M.
  • Bentsen, R. A., Vavrik, W. A., Roesler, J. R., & Gillen, S. L. (2013). Ternary blend concrete with reclaimed asphalt pavement as an aggregate in two-lift concrete pavement. Proc., 2013 Int. Concrete Sustainability Conf (pp. 1–13). Silver Spring, MD, USA: National Ready Mixed Concrete Association. https://intrans.iastate.edu/app/uploads/sites/7/2018/08/1-Ternary-Blend-Concrete-with-Reclaimed-Ashpalt.pdf
  • Berry, M., Kappes, B., & Kappes, L. (2015). Optimization of concrete mixtures containing reclaimed asphalt pavement. ACI Materials Journal, 112 723–733. https://doi.org/10.14359/51687854
  • BIS. (1988b). Indian standard methods of physical tests for hydraulic cement: Determination of compressive strength of hydraulic cement other than masonry cement, IS. 4031 - Part 6.
  • BIS. (1988c). Indian standard methods of physical tests for hydraulic cement: Determination of consistency of standard cement paste, IS:4031 - Part 4, BIS, Reaffirmed 2005. Bureau of Indian Standards.
  • BIS. (1988d). Indian standard methods of physical tests for hydraulic cement: Determination of soundness, IS:4031 - Part 3, BIS, Reaffirmed 2005. Bureau of Indian Standards.
  • BIS. (1999). Indian standard methods of physical tests for hydraulic cement: Determination of fineness by blaine air permeability method, IS:4031 - Part 2.
  • BIS. (2000). Plain and reinforced concrete code of practice. In 4th Revision, IS 456, BIS. Bureau of Indian Standards.
  • BIS. (2013). Ordinary portland cement, 53 Grade — Specification, IS 12269.
  • BIS. (2018a). Fresh concrete – methods of sampling and testing: Determination of consistency of fresh concrete, IS 1199 – Part 2.
  • BIS. (2018c). hardened concrete - methods of test: Ultrasonic pulse velocity testing. IS:516 – Part 5/Sec 1.
  • BIS. (2020). Hardened concrete - methods of test: Determination of modulus of elasticity of concrete. IS:516 – Part 8.
  • BIS. (2021). Hardened concrete - methods of test: Testing of compressive, flexural, and split tensile strength hardened concrete. IS:516 – Part 1.
  • BIS (Bureau of Indian Standards). (1963). Methods of test for aggregates for concrete: Specific gravity, density, voids, absorption and bulking, IS:2386-PartIII.
  • BIS (Bureau of Indian Standards). (1988a). indian standard methods of physical tests for hydraulic cement: Determination of initial and final setting times, IS:4031 - Part 5, BIS, Reaffirmed 2005. Bureau of Indian Standards.
  • BIS (Bureau of Indian Standards). (2018b). Fresh concrete – methods of sampling and testing: Determination of density of fresh concrete, IS 1199 – Part 3.
  • Brand, A. S., Amirkhanian, A. N., & Roesler, J. R. (2014). Flexural capacity of full-depth and two-lift concrete slabs with recycled aggregates, Transp. Research Record, 2456(1), 64–72. https://doi.org/10.3141/2456-07
  • Brand, A. S., & Roesler, J. R. (2015). Ternary concrete with fractionated reclaimed asphalt pavement. ACI Materials Journal, 112(1). https://doi.org/10.14359/51687176
  • Brand, A. S., & Roesler, J. R. (2017a). Bonding in cementitious materials with asphalt-coated particles: Part I – The interfacial transition zone. Construction and Building Materials, 130, 171–181. https://doi.org/10.1016/j.conbuildmat.2016.10.019
  • Brand, A. S., & Roesler, J. R. (2017b). Bonding in cementitious materials with asphalt-coated particles: Part II – Cement-asphalt chemical interactions. Construction and Building Materials, 130, 182–192. https://doi.org/10.1016/j.conbuildmat.2016.10.013
  • CSA. (2004). Design of Concrete Structures CAN/CSA-A23.3-04”. Standards Council of Canada.
  • Debbarma, S., Ransinchung, R. N., D, G., & Singh, S. (2019). Feasibility of roller-compacted concrete pavement containing different fractions of reclaimed asphalt pavement. Construction and Building Materials, 199, 508–525. https://doi.org/10.1016/j.conbuildmat.2018.12.047
  • Debbarma, S., Selvam, M., & Singh, S. (2020). Can flexible pavements waste (RAP) be utilized in cement concrete pavements? - A critical review. Construction and Building Materials, 259, 1–20. https://doi.org/10.1016/j.conbuildmat.2020.120417
  • ECS. (2004). Eurocode 2: design of concrete structures: General rules and rules for buildings, EN 1992-1-1”. CEN.
  • Erdem, S., & Blankson, M. A. (2014). Environmental performance and mechanical analysis of concrete containing recycled asphalt pavement (RAP) and waste precast concrete as aggregate. Journal of Hazardous Materials, 264, 403–410. https://doi.org/10.1016/j.jhazmat.2013.11.040
  • Fakhri, M., & Amoosoltani, E. (2017). The effect of reclaimed asphalt pavement and crumb rubber on mechanical properties of roller compacted concrete pavement, Constr. Building Materials, 137(2017), 470–484. https://doi.org/10.1016/j.conbuildmat.2017.01.136
  • Ferrebee, E. C., Brand, A. S., Kachwalla, A. S., Roesler, J. R., Gancarz, D. J., & Pforr, J. E. (2014). Fracture properties of roller-compacted concrete with virgin and recycled aggregates. Transportation Research Record: Journal of the Transportation Research Board, 2441(1), 128–134. https://doi.org/10.3141/2441-17
  • García, A., Castro-Fresno, D., Polanco, J. A., & Thomas, C. (2012). Abrasive wear evolution in concrete pavements. Road Materials and Pavement Design, 13(3), 534–548. https://doi.org/10.1080/14680629.2012.694094
  • Guthrie, W. S., Brown, A. V., & Eggett, D. L. (2007). Cement stabilization of aggregate base material blended with reclaimed asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, 2026(1), 47–53. https://doi.org/10.3141/2026-06
  • Hmoud, R. H. (2011). Evaluation of VMA and film thickness requirements in hot-Mix Asphalt. Modern Applied Science, 5(4). https://doi.org/10.5539/mas.v5n4p166
  • Hossiney, N., Tia, M., & Bergin, M. J. (2010). Concrete containing RAP for use in concrete pavement. International Journal of Pavement Research and Technology, 3, 251–258.
  • Hoyos, L. R., Puppala, A. J., & Ordonez, C. A. (2011). Characterization of cement-fiber-treated reclaimed asphalt pavement aggregates: Preliminary investigation. Journal of Materials in Civil Engineering, 23(7), 977–989. https://doi.org/10.1061/(asce)mt.1943-5533.0000267
  • Huang, B., Li, G., Vukosavljevic, D., Shu, X., & Egan, B. K. (2005). Laboratory investigation of mixing Hot-Mix Asphalt with reclaimed asphalt pavement. Transportation Research Record: Journal of the Transportation Research Board, 1929(1), 37–45. https://doi.org/10.1177/0361198105192900105
  • Huang, B., Shu, X., & Burdette, E. G. (2006). Mechanical properties of concrete containing recycled asphalt pavements. Magazine of Concrete Research, 58(5), 313–320. https://doi.org/10.1680/macr.2006.58.5.312
  • Ibrahim, A., Mahmoud, E., Khodair, Y., & Patibandla, V. C. (2014). Fresh, mechanical, and durability characteristics of self-consolidating concrete incorporating recycled asphalt pavements. Journal of Materials in Civil Engineering, 26(4), 668–675. https://doi.org/10.1061/(asce)mt.1943-5533.0000832
  • IRC. (2017). Tentative guidelines for cement concrete mix design for pavements. IRC:44.
  • IRC (Indian Road Congress). (2015). Guidelines for the design of plain jointed rigid pavements for highways. IRC:58.
  • Katsakou, M., & Kolias, S. (2007). Mechanical properties of cement-bound recycled pavements, Proc. ICE Constr. Mater. 160 171–179. https://doi.org/10.1680/coma.2007.160.4.171.
  • Li, X., Williams, R. C., Marasteanu, M. O., Clyne, T. R., & Johnson, E. (2009). Investigation of in-place asphalt film thickness and performance of Hot-Mix Asphalt Mixtures. Journal of Materials in Civil Engineering, 21(6), 262–270. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:6(262)
  • Mahmoud, E., Ibrahim, A., El-Chabib, H., & Patibandla, V. C. (2013). Self-Consolidating concrete incorporating high volume of fly ash, slag, and recycled asphalt pavement. International Journal of Concrete Structures and Materials, 7(2), 155–163. https://doi.org/10.1007/s40069-013-0044-1
  • Mansourkhaki, A., Ameri, M., Habibpour, M., & Shane Underwood, B. (2020). Chemical composition and rheological characteristics of binders containing RAP and rejuvenator. Journal of Materials in Civil Engineering, 32(4), 04020026. https://doi.org/10.1061/(ASME)MT.1943-5533.0003061
  • Mathias, V., Sedran, T., & de Larrard, F. (2009). Modelling of mechanical properties of cement concrete incorporating reclaimed asphalt pavement. Road Materials and Pavement Design, 10(1), 63–82. https://doi.org/10.1080/14680629.2009.9690182
  • Moaveni, M., Cetin, S., Brand, A. S., Dahal, S., Roesler, J. R., & Tutumluer, E. (2016). Machine vision-based characterization of particle shape and asphalt coating in Reclaimed Asphalt Pavement. Transportation Geotechnics, 6, 26–37. https://doi.org/10.1061/j.trgeo.2016.01.001
  • Modarres, A., & Hosseini, Z. (2014). Mechanical properties of roller-compacted concrete containing rice husk ash with original and recycled asphalt pavement material, Mater. Design, 64(2014), 227–236. https://doi.org/10.1016/j.matdes.2014.07.072
  • Mohammadafzali, M., Ali, H., Sholar, G. A., Rilko, W. A., & Baqersad, M. (2018). Effects of rejuvenation and aging on binder homogeneity of recycled asphalt mixtures. Journal of Transportation Engineering Part B. Pavements, 145(1), 4018066. https://doi.org/10.1061/JPEODX.0000089
  • Naik, T. R., Singh, S. S., & Hossain, M. M. (1994). Abrasion resistance of concrete as influenced by the inclusion of fly ash. International Journal of Cement and Concrete Research, 24(2), 301–312. https://doi.org/10.1016/0008-8846(94)90056-6
  • Noferini, L., Simone, A., Sangiorgi, C., & Mazzotta, F. (2017). Investigation on performances of asphalt mixtures made with Reclaimed Asphalt Pavement: Effects of interaction between virgin and RAP asphalt. International Journal of Pavement Research and Technology, 10(4), 322–332. https://doi.org/10.1016/j.ijprt.2017.03.011
  • NZS (New Zealand Standard). (2006). Concrete structures standard: Part 1 - The Design of Concrete Structures, NZS 3101-1, New Zealand, the trading arm of the Standards Council, Private Bag 2439. NZS.
  • Puppala, A. J., Hoyos, L. R., & Potturi, A. K. (2011). Resilient moduli response of moderately cement-treated reclaimed asphalt pavement aggregates. Journal of Materials in Civil Engineering, 23(7), 990–998. https://doi.org/10.1061/(asce)mt.1943-5533.0000268
  • Sachet, T., Albuquerque, M. C. F., Balbo, J. T., & Sansone, C. E. (2011). Investigation of resistance and fracture parameters for compacted concrete with incorporation of reclaimed asphalt pavement. International Journal of Pavements, 10(1–3), 83–93.
  • Saghafi, M., Tabatabaee, N., & Nazarian, S. (2019). Performance evaluation of slurry seals containing reclaimed asphalt pavement. Transportation Research Record, 2673(1), 358–368. https://doi.org/10.1177/0361198118821908
  • Sengoz, B., & Agar, E. (2007). Effect of asphalt film thickness on the moisture sensitivity characteristics of hot-mix asphalt. Building and Environment, 42(10), 3621–3628. https://doi.org/10.1016/j.buildenv.2006.10.006
  • Settari, C., Debieb, F., Kadri, E. H., & Boukendakdji, O. (2015). Assessing the effects of recycled asphalt pavement materials on the performance of roller-compacted concrete. Construction and Building Materials, 101, 617–621. https://doi.org/10.1016/j.conbuildmat.2015.10.039
  • Shi, X., Mukhopadhyay, A., & Liu, K. W. (2017). Mix design formulation and evaluation of Portland cement concrete paving mixtures containing reclaimed asphalt pavement. Construction and Building Materials, 152(Oct), 756–768. https://doi.org/10.1016/j.conbuildmat.2017.06.174
  • Shi, X., Mukhopadhyay, A., & Zollinger, D. (2018). Sustainability assessment for Portland cement concrete pavement containing reclaimed asphalt pavement aggregates. Journal of Cleaner Production, 192, 569–581. https://doi.org/10.1016/j.jclepro.2018.05.004
  • Singh, S., Ransinchung, R. N., D, G., & Kumar, P. (2018a). Performance evaluation of RAP concrete in aggressive environment. Journal of Materials in Civil Engineering, 30(10), 04018231. https://doi.org/10.1061/(asce)mt.1943-5533.0002316
  • Singh, S., Ransinchung, G. D., & Kumar, P. (2017). Feasibility study of RAP aggregates in cement concrete pavements. Road Materials Pavement Des, 1–20. https://doi.org/10.1080/14680629.2017.1380071
  • Singh, S., Ransinchung, G. D. R. N., Monu, K., & Kumar, P. (2018b). Laboratory investigation of RAP aggregates for dry lean concrete mixes. Construction and Building Materials, 166, 808–816. https://doi.org/10.1016/j.conbuildmat.2018.01.131
  • Singh, S., Ransinchung, G. D. R. N., Monu, K., & Kumar, P. (2019). Sustainable lean concrete mixes containing wastes originating from roads and industries. Construction and Building Materials, 209(Jun), 619–630. https://doi.org/10.1016/j.conbuildmat.2019.03.122
  • Su, Y. M., Hossiney, N., Tia, M., & Bergin, M. (2014). Mechanical properties assessment of concrete containing reclaimed asphalt pavement using the Superpave indirect tensile strength test. Journal of Testing and Evaluation, 42(2014), 1–9. http://dx.doi.org/10.1520/JTE20130093
  • Taha, R. (2003). Evaluation of cement kiln dust-stabilized reclaimed asphalt pavement aggregate systems in road bases, transportation research record. (1819), 11–17. https://doi.org/10.3141/1819b-02
  • Topcu, I. B., & Isikdag, B. (2009). Effects of crushed rap on free and restrained shrinkage of mortars. International Journal of Concrete Structures and Materials, 3(2), 91–95. https://doi.org/10.4334/IJCSM.2009.3.2.091
  • Visintine, B., Khosla, N. P., & Tayebali, A. (2013). Effects of higher percentage of recycled asphalt pavement on pavement performance. Road Materials and Pavement Design, 14(2), 432–437. https://doi.org/10.1080/14680629.2013.779310
  • Xiao, F., Amirkhanian, S., & Juang, C. H. (2007). Rutting resistance of rubberized asphalt concrete pavements containing reclaimed asphalt pavement mixtures. Journal of Materials in Civil Engineering, 19(6), 475–483. https://doi.org/10.1061/(ASCE)0899-1561(2007)19:6(475)
  • Yu, X., Dong, F., Xu, B., Ding, G., & Ding, P. (2017). RAP binder influences on the rheological characteristics of foamed warm-mix recycled asphalt. Journal of Materials in Civil Engineering, 29(9), 04017145. https://doi.org/10.1061/(ASCE)mt.1943-5533.0001993
  • Zhang, H., Harvey, J., Jiao, L., Li, H., & Elkashef, M. (2020). Study on binder film thickness distribution of recycled asphalt pavements. Journal of Testing and Evaluation, 48(3), 2474–2493. https://doi.org/10.1520/JTE20190624