1,769
Views
5
CrossRef citations to date
0
Altmetric
Review Article

Digital twin applications in urban logistics: an overview

, &
Article: 2216768 | Received 23 Mar 2023, Accepted 17 May 2023, Published online: 01 Jun 2023

References

  • Agarwal, R., Schuurmans, D., & Norouzi, M. (2020). An optimistic perspective on offline reinforcement learning. In International Conference on Machine Learning, Vienna, Austria, (pp. 104–26). PMLR.
  • Alho, A. R., & E Silva, J. D. A. (2015). Utilizing urban form characteristics in urban logistics analysis: A case study in Lisbon, portugal. Journal of Transport Geography, 42, 57–71. https://doi.org/10.1016/j.jtrangeo.2014.11.002
  • Amaran, S., Sahinidis, N. V., Sharda, B., & Bury, S. J. (2016). Simulation optimization: A review of algorithms and applications. Annals of Operations Research, 240(1), 351–380. https://doi.org/10.1007/s10479-015-2019-x
  • Anand, N., Yang, M., van Duin, J. R., & Tavasszy, L. (2012). Genclon: An ontology for city logistics. Expert Systems with Applications, 39(15), 11944–11960. https://doi.org/10.1016/j.eswa.2012.03.068
  • Bai, R., Chen, X., Chen, Z. -L., Cui, T., Gong, S., He, W., Jiang, X., Jin, H., Jin, J., Kendall, G., Li, J., Lu, Z., Ren, J., Weng, P., Xue, N., & Zhang, H. (2021). Analytics and machine learning in vehicle routing research. International Journal of Production Research, 61(1), 1–27. https://doi.org/10.1080/00207543.2021.2013566
  • Bárkányi, Á., Chován, T., Németh, S., & Abonyi, J. (2021). Modelling for digital twins—potential role of surrogate models. Processes, 9(3), 476. https://doi.org/10.3390/pr9030476
  • Belfadel, A., Hörl, S., Tapia, R. J., & Puchinger, J. (2021). Towards a digital twin framework for adaptive last mile city logistics. In 2021 6th International Conference on Smart and Sustainable Technologies (SpliTech), Split, Croatia, (pp. 1–6). IEEE.
  • Bengio, Y., Lodi, A., & Prouvost, A. (2021). Machine learning for combinatorial optimization: A methodological tour d’horizon. European Journal of Operational Research, 290(2), 405–421. https://doi.org/10.1016/j.ejor.2020.07.063
  • Boschert, S., & Rosen, R. (2016). Digital twin—the simulation aspect. Mechatronic Futures: Challenges and Solutions for Mechatronic Systems and Their Designers, 59–74.
  • Botn-Sanabria, D. M., Mihaita, A. -S., Peimbert-Garca, R. E., Ramrez-Moreno, M. A., Ramrez-Mendoza, R. A., & Lozoya-Santos, J. D. J. (2022). Digital twin technology challenges and applications: A comprehensive review. Remote Sensing, 14(6), 1335. https://doi.org/10.3390/rs14061335
  • Büyüközkan, G., & Ilcak, Ö. (2021). Smart urban logistics: Literature review and future directions. Socio-Economic Planning Sciences, 81, 101197. https://doi.org/10.1016/j.seps.2021.101197
  • Cooray, P., & Rupasinghe, T. D. (2017). Machine learning-based parameter tuned genetic algorithm for energy minimizing vehicle routing problem. Journal of Industrial Engineering, 2017, 2017. https://doi.org/10.1155/2017/3019523
  • Dabia, S., Demir, E., & Woensel, T. V. (2017). An exact approach for a variant of the pollution-routing problem. TransporReinforcement learning, as a methodtation Science, 51(2), 607–628. https://doi.org/10.1287/trsc.2015.0651
  • Da Costa, P., Rhuggenaath, J., Zhang, Y., Akcay, U., & Alp Anwd Kaymak. (2021). Learning 2-opt heuristics for routing problems via deep reinforcement learning. SN Computer Science, 2(5), 388. https://doi.org/10.1007/s42979-021-00779-2
  • El Ouadi, J., Errousso, H., Benhadou, S., Medromi, H., & Malhene, N. (2020). A machine-learning based approach for zoning urban area in consolidation schemes context. In 2020 IEEE 13th International Colloquium of Logistics and Supply Chain Management (LOGISTIQUA), Fez, Morocco, (pp. 1–7). IEEE.
  • Furian, N., O’Sullivan, M., Walker, C., & Çela, E. (2021). A machine learning-based branch and price algorithm for a sampled vehicle routing problem. OR Spectrum, 43(3), 693–732. https://doi.org/10.1007/s00291-020-00615-8
  • Ghandar, A., Ahmed, A., Zulfiqar, S., Hua, Z., Hanai, M., & Theodoropoulos, G. (2021). A decision support system for urban agriculture using digital twin: A case study with aquaponics. IEEE Access, 9, 35691–35708. https://doi.org/10.1109/ACCESS.2021.3061722
  • Giuffrida, N., Fajardo-Calderin, J., Masegosa, A. D., Werner, F., Steudter, M., & Pilla, F. (2022). Optimization and machine learning applied to last-mile logistics: A review. Sustainability, 14(9), 5329. https://doi.org/10.3390/su14095329
  • Golinska Dawson, P., & Sethanan, K. (2023). Sustainable urban freight for energy-efficient smart cities—systematic literature review. Energies, 16(6), 2617. https://doi.org/10.3390/en16062617
  • Griffis, S. E., Goldsby, T. J., Cooper, M., & Closs, D. J. (2007). Aligning logistics performance measures to the information needs of the firm. Journal of Business Logistics, 28(2), 35–56. https://doi.org/10.1002/j.2158-1592.2007.tb00057.x
  • Gunasekaran, A., & Kobu, B. (2007). Performance measures and metrics in logistics and supply chain management: A review of recent literature (1995–2004) for research and applications. International Journal of Production Research, 45(12), 2819–2840. https://doi.org/10.1080/00207540600806513
  • Guo, J., & Lv, Z. (2022). Application of digital twins in multiple fields. Multimedia Tools & Applications, 81(19), 26941–26967. https://doi.org/10.1007/s11042-022-12536-5
  • Gutierrez-Franco, E., Mejia-Argueta, C., & Rabelo, L. (2021). Data-driven methodology to support long-lasting logistics and decision making for urban last-mile operations. Sustainability, 13(11), 6230. https://doi.org/10.3390/su13116230
  • Haße, H., Li, B., Weißenberg, N., Cirullies, J., & Otto, B. (2019). Digital twin for real-time data processing in logistics. In Artificial Intelligence and Digital Transformation in Supply Chain Management: Innovative Approaches for Supply Chains. Proceedings of the Hamburg International Conference of Logistics (HICL), Vol. 27 (pp. 4–28). Berlin: epubli GmbH.
  • Hottung, A., & Tierney, K. (2019). Neural large neighborhood search for the capacitated vehicle routing problem. arXiv preprint arXiv:1911.09539.
  • Ivanov, S., Nikolskaya, K., Radchenko, G., Sokolinsky, L., & Zymbler, M. (2020). Digital twin of city: Concept overview. In 2020 Global Smart Industry Conference (GloSIC), Chelyabinsk, Russia, (pp. 178–186). IEEE.
  • James, J., Yu, W., & Gu, J. (2019). Online vehicle routing with neural combinatorial optimization and deep reinforcement learning. IEEE Transactions on Intelligent Transportation Systems, 20(10), 3806–3817. https://doi.org/10.1109/TITS.2019.2909109
  • Jeong, D. -Y., Baek, M. -S., Lim, T. -B., Kim, Y. -W., Kim, S. -H., Lee, Y. -T., Jung, W. -S., & Lee, I. -B. (2022). Digital twin: Technology evolution stages and implementation layers with technology elements. IEEE Access, 10, 52609–52620. https://doi.org/10.1109/ACCESS.2022.3174220
  • Jlassi, S., Tamayo, S., & Gaudron, A. (2018). Simulation applied to urban logistics: A state of the art. City LogisticsTowards Sustainable and Liveable Cities, 3(1), 65–87.
  • Joe, W., & Lau, H. C. (2020). Deep reinforcement learning approach to solve dynamic vehicle routing problem with stochastic customers. In Proceedings of the international Conference on Automated Planning and Scheduling, Nancy, France, 30, (pp. 394–402).
  • Jucha, P. (2021). Use of artificial intelligence in last mile delivery. In SHS Web of Conferences, Zilina, Slovakia, (pp. 04011). EDP Sciences volume 92.
  • Karakikes, I., Nathanail, E., & Savrasovs, M. (2018). Techniques for smart urban logistics solutions’ simulation: A systematic review. In International conference on Reliability and Statistics in transportation and communication, Riga, Latvia, 18, (pp. 551–561). Springer.
  • Khalil, E., Dai, H., Zhang, Y., Dilkina, B., & Song, L. (2017). Learning combinatorial optimization algorithms over graphs. Advances in Neural Information Processing Systems 30: Annual Conference on Neural Information Processing, Long Beach, CA, USA, 30, 6351–6361.
  • Lagorio, A., Pinto, R., & Golini, R. (2016). Research in urban logistics: A systematic literature review. International Journal of Physical Distribution & Logistics Management, 46(10), 908–931. https://doi.org/10.1108/IJPDLM-01-2016-0008
  • Lagorio, A., Pinto, R., & Golini, R. (2017). Urban logistics ecosystem: A system of system framework for stakeholders in urban freight transport projects. IFAC-Papersonline, 50(1), 7284–7289. https://doi.org/10.1016/j.ifacol.2017.08.1402
  • LCB. (2022). Leefbare stad. Retrived July 27, 2022, from URL: https://www.lcb.nu/themas/details/?id=2722a341-a017-eb11-a813-000d3abaccb2.
  • Leng, J., Wang, D., Shen, W., Li, X., Liu, Q., & Chen, X. (2021). Digital twins-based smart manufacturing system design in industry 4.0: A review. Journal of Manufacturing Systems, 60, 119–137. https://doi.org/10.1016/j.jmsy.2021.05.011
  • Leng, J., Zhou, M., Xiao, Y., Zhang, H., Liu, Q., Shen, W., Su, Q., & Li, L. (2021). Digital twins-based remote semi-physical commissioning of flow-type smart manufacturing systems. Journal of Cleaner Production, 306, 127278. https://doi.org/10.1016/j.jclepro.2021.127278
  • Levine, S., Kumar, A., Tucker, G., & Fu, J. (2020). Offline reinforcement learning: Tutorial, review, and perspectives on open problems. arXiv preprint arXiv:2005.01643.
  • Liu, Y., Folz, P., Pan, S., Ramparany, F., Bolle, S., Ballot, E., & Coupaye, T. (2021). Digital twin-driven approach for smart city logistics: The case of freight parking management. In Advances in Production Management Systems. Artificial Intelligence for Sustainable and Resilient Production Systems: IFIP WG 5.7 International Conference, APMS 2021, Nantes, France, September 5–9, 2021, Proceedings, Part IV (pp. 237–246). Springer.
  • Lombardi, M., & Milano, M. (2018). Boosting combinatorial problem modeling with machine learning. arXiv preprint arXiv:1807.05517.
  • Lu, J., Liu, A., Dong, F., Gu, F., Gama, J., & Zhang, G. (2018). Learning under concept drift: A review. IEEE Transactions on Knowledge and Data Engineering, 31, 2346–2363. https://doi.org/10.1109/TKDE.2018.2876857
  • Marcucci, E., Gatta, V., Le Pira, M., Hansson, L., & Bråthen, S. (2020). Digital twins: A critical discussion on their potential for supporting policy-making and planning in urban logistics. Sustainability, 12(24), 10623. https://doi.org/10.3390/su122410623
  • Mazyavkina, N., Sviridov, S., Ivanov, S., & Burnaev, E. (2021). Reinforcement learning for combinatorial optimization: A survey. Computers & Operations Research, 134, 105400. https://doi.org/10.1016/j.cor.2021.105400
  • Miao, J., & Lan, S. (2021). Application of visual sensing image processing technology under digital twins to the intelligent logistics system. Advances in Civil Engineering, 2021, 1–13. https://doi.org/10.1155/2021/5743387
  • Montoya, A., Guéret, C., Mendoza, J. E., & Villegas, J. G. (2017). The electric vehicle routing problem with nonlinear charging function. Transportation Research Part B: Methodological, 103, 87–110. https://doi.org/10.1016/j.trb.2017.02.004
  • Morabit, M., Desaulniers, G., & Lodi, A. (2021). Machine-learning–based column selection for column generation. Transportation Science, 55(4), 815–831. https://doi.org/10.1287/trsc.2021.1045
  • Morana, J., Gonzalez-Feliu, J., Allaoui, H., & Alok Choudhary, P. (2015). A sustainable urban logistics dashboard from the perspective of a group of operational managers. Management Research Review, 38(10), 1068–1085. https://doi.org/10.1108/MRR-11-2014-0260
  • Moshood, T. D., Nawanir, G., Sorooshian, S., & Okfalisa, O. (2021). Digital twins driven supply chain visibility within logistics: A new paradigm for future logistics. Applied System Innovation, 4(2), 29. https://doi.org/10.3390/asi4020029
  • Muñuzuri, J., Larrañeta, J., Onieva, L., & Cortés, P. (2005). Solutions applicable by local administrations for urban logistics improvement. Cities, 22(1), 15–28. https://doi.org/10.1016/j.cities.2004.10.003
  • Nazari, M., Oroojlooy, A., Snyder, L., & Takác, M. (2018). Reinforcement learning for solving the vehicle routing problem. Advances in Neural Information Processing Systems 31.
  • Niu, Y., Kong, D., Wen, R., Cao, Z., & Xiao, J. (2021). An improved learnable evolution model for solving multi-objective vehicle routing problem with stochastic demand. Knowledge-Based Systems, 230, 107378. https://doi.org/10.1016/j.knosys.2021.107378
  • Niu, Y., Shao, J., Xiao, J., Song, W., & Cao, Z. (2022). Multi-objective evolutionary algorithm based on rbf network for solving the stochastic vehicle routing problem. Information Sciences, 609, 387–410. https://doi.org/10.1016/j.ins.2022.07.087
  • Pan, S., Zhou, W., Piramuthu, S., Giannikas, V., & Chen, C. (2021). Smart city for sustainable urban freight logistics. International Journal of Production Research, 59(7), 2079–2089. https://doi.org/10.1080/00207543.2021.1893970
  • Rosen, R., Von Wichert, G., Lo, G., & Bettenhausen, K. D. (2015). About the importance of autonomy and digital twins for the future of manufacturing. IFAC-Papersonline, 48(3), 567–572. https://doi.org/10.1016/j.ifacol.2015.06.141
  • Russo, F., & Comi, A. (2010). A classification of city logistics measures and connected impacts. Procedia-Social & Behavioral Sciences, 2(3), 6355–6365. https://doi.org/10.1016/j.sbspro.2010.04.044
  • Rydin, Y., Bleahu, A., Davies, M., Dávila, J. D., Friel, S., De Grandis, G., Groce, N., Hallal, P. C., Hamilton, I., Howden Chapman, P., Lai, K. -M., Lim, C. J., Martins, J., Osrin, D., Ridley, I., Scott, I., Taylor, M., Wilkinson, P., & Wilson, J. (2012). Shaping cities for health: Complexity and the planning of urban environments in the 21st century. The Lancet, 379(9831), 2079–2108. https://doi.org/10.1016/S0140-6736(12)60435-8
  • Savelsbergh, M., & Van Woensel, T. (2016). 50th anniversary invited article—city logistics: Challenges and opportunities. Transportation Science, 50(2), 579–590. https://doi.org/10.1287/trsc.2016.0675
  • Schislyaeva, E. R., & Kovalenko, E. A. (2021). Innovations in logistics networks on the basis of the digital twin. Academy of Strategic Management Journal, 20(Special Issue 2), 1–17.
  • Semeraro, C., Lezoche, M., Panetto, H., & Dassisti, M. (2021). Digital twin paradigm: A systematic literature review. Computers in Industry, 130, 103469. https://doi.org/10.1016/j.compind.2021.103469
  • Shen, X., Zhang, Y., Tang, Y., Qin, Y., Liu, N., & Yi, Z. (2022). A study on the impact of digital tobacco logistics on tobacco supply chain performance: Taking the tobacco industry in Guangxi as an example. Industrial Management & Data Systems, 122(6), 1416–1452. https://doi.org/10.1108/IMDS-05-2021-0270
  • Shi, H., Sun, L., Teng, Y., & Hu, X. (2019). An online intelligent vehicle routing and scheduling approach for b2c e-commerce urban logistics distribution. Procedia computer science, 159, 2533–2542. https://doi.org/10.1016/j.procs.2019.09.428
  • Sonneberg, M. -O., Leyerer, M., Kleinschmidt, A., Knigge, F., & Breitner, M. H. (2019). Autonomous unmanned ground vehicles for urban logistics: Optimization of last mile delivery operations. In Proceedings of the 52nd hawaii international conference on system sciences, Maui, Hawaii, USA.
  • Szmelter-Jarosz, A., Rześny-Cieplińska, J., & Jezierski, A. (2020). Assessing resources management for sharing economy in urban logistics. Resources, 9(9), 113. https://doi.org/10.3390/resources9090113
  • Tao, F., Qi, Q., Wang, L., & Nee, A. (2019). Digital twins and cyber–physical systems toward smart manufacturing and industry 4.0: Correlation and comparison. Engineering, 5(4), 653–661. https://doi.org/10.1016/j.eng.2019.01.014
  • Teng, S. Y., Touš, M., Leong, W. D., How, B. S., Lam, H. L., & Máša, V. (2021). Recent advances on industrial data-driven energy savings: Digital twins and infrastructures. Renewable & Sustainable Energy Reviews, 135, 110208. https://doi.org/10.1016/j.rser.2020.110208
  • Vallejo, M. E., Larios, V. M., Magallanes, V. G., Cobián, C., Castañeda, M. D. L. L. G., & Téllez, G. B. (2021). Creating resilience for climate change in smart cities based on the local food supply chain. In 2021 IEEE International Smart Cities Conference (ISC2) (pp. 1–7). IEEE.
  • van Heeswijk, W. J., Mes, M. R., Schutten, J., & Zijm, W. (2020). Evaluating urban logistics schemes using agent-based simulation. Transportation Science, 54(3), 651–675. https://doi.org/10.1287/trsc.2019.0971
  • Wang, R., Zhou, X., Dong, L., Wen, Y., Tan, R., Chen, L., Wang, G., & Zeng, F. (2020). Kalibre: Knowledge-based neuralLearning 2-opt heuristics for routing problems via deep reinforcement learning surrogate model calibration for data center digital twins. In Proceedings of the 7th ACM International Conference on Systems for Energy-Efficient Buildings, Cities, and Transportation (pp. 200–209).
  • White, G., Zink, A., Codecá, L., & Clarke, S. (2021). A digital twin smart city for citizen feedback. Cities, 110, 103064. https://doi.org/10.1016/j.cities.2020.103064
  • Xu, Z., Chang, D., Sun, M., & Luo, T. (2022). Dynamic scheduling of crane by embedding deep reinforcement learning into a digital twin framework. Information, 13(6), 286. https://doi.org/10.3390/info13060286
  • Zdolsek Draksler, T., Cimperman, M., & Obrecht, M. (2023). Data-driven supply chain operations—the pilot case of postal logistics and the cross-border optimization potential. Sensors, 23(3), 1624. https://doi.org/10.3390/s23031624
  • Zhao, J., Mao, M., Zhao, X., & Zou, J. (2020). A hybrid of deep reinforcement learning and local search for the vehicle routing problems. IEEE Transactions on Intelligent Transportation Systems, 22(11), 7208–7218. https://doi.org/10.1109/TITS.2020.3003163
  • Zhao, Z., Zhang, M., Chen, J., Qu, T., & Huang, G. Q. (2022). Digital twin-enabled dynamic spatial-temporal knowledge graph for production logistics resource allocation. Computers & Industrial Engineering, 171, 108454. https://doi.org/10.1016/j.cie.2022.108454
  • Zou, X., Somenahalli, S., & Scrafton, D. (2020). Evaluation and analysis of urban logistics competitiveness and spatial evolution. International Journal of Logistics: Research & Applications, 23(5), 493–507. https://doi.org/10.1080/13675567.2019.1703916