197
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of NaHCO3 as the activator and the in-situ carbonate seeding on the properties of high-dosage Ca(OH)2 + slag (HCHS) cement

, , &

References

  • Andres RJ, Boden TA, Bréon F-M, et al. A synthesis of carbon dioxide emissions from fossil-fuel combustion. Biogeosciences. 2012;9(5):1845–1871. doi: 10.5194/bg-9-1845-2012.
  • Malhotra VM. Pozzolanic and cementitious materials. London: Taylor & Francis Press, 2004.
  • Chao L, Ya-Fei H, Feng-Qing Z. Preparation of fly ash-granulated blast furnace slag-carbide slag binder and application in total tailings paste backfill. IOP Conf Ser Mater Sci Eng. 2018;322:042003. doi: 10.1088/1757-899X/322/4/042003.
  • Liu T, Yu QL, Brouwers HJH, et al. Utilization of waste glass in alkali activated slag/fly ash blends: reaction process, microstructure, and chloride diffusion behavior. J Sustain Cem-Based. 2023;12(5):516–526. doi: 10.1080/21650373.2022.2082577.
  • Cong P, Mei L. Using silica fume for improvement of fly ash/slag based geopolymer activated with calcium carbide residue and gypsum. Constr Build Mater. 2021;275(9):122171. doi: 10.1016/j.conbuildmat.2020.122171.
  • Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cem Concr Res. 2010;40(9):1341–1349. doi: 10.1016/j.cemconres.2010.03.020.
  • Yu R, Spiesz P, Brouwers HJH. Development of an eco-friendly ultra-high performance concrete (UHPC) with efficient cement and mineral admixtures uses. Cem Concr Compos. 2015;55(1):383–394. doi: 10.1016/j.cemconcomp.2014.09.024.
  • Yang KH, Cho AR, Song JK, et al. Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Constr Build Mater. 2012;29:410–419. doi: 10.1016/j.conbuildmat.2011.10.063.
  • Lee NK, Lee HK. Setting and mechanical properties of alkali-activated fly ash/slag concrete manufactured at room temperature. Constr Build Mater. 2013;47:1201–1209. doi: 10.1016/j.conbuildmat.2013.05.107.
  • Makhadmeh WA, Soliman A. Effect of activator nature on property development of alkali-activated slag binders. J Sustain Cem-Based. 2020;10(4):240–256.
  • Yang KH, Sim JI, Nam SH. Enhancement of reactivity of calcium hydroxide-activated slag mortars by the addition of barium hydroxide. Constr Build Mater. 2010;24(3):241–251. doi: 10.1016/j.conbuildmat.2009.09.001.
  • Kang SH, Kwon YH, Hong SG, et al. Hydrated lime activation on byproducts for eco-friendly production of structural mortars. J Clean Prod. 2019;231:1389–1398. doi: 10.1016/j.jclepro.2019.05.313.
  • Shi C. Pozzolanic reaction and microstructure of chemical activated lime-fly ash pastes. ACI Mater J. 1998;95(5):537–545.
  • Shi C, Day RL. Comparison of different methods for enhancing reactivity of pozzolans. Cem Concr Res. 2001;31(5):813–818. doi: 10.1016/S0008-8846(01)00481-1.
  • Shi C. Alkali-activated cements and concretes. London: Taylor & Francis Press, 2006.
  • Jeong Y, Oh JE, Jun Y, et al. Influence of four additional activators on hydrated-lime [Ca(OH)2] activated ground granulated blast-furnace slag. Cem Concr Compos. 2016;65:1–10. doi: 10.1016/j.cemconcomp.2015.10.007.
  • Xiao X, Goh LX, Unluer C, et al. Bacteria-induced internal carbonation of reactive magnesia cement. Constr Build Mater. 2021;267:121748. doi: 10.1016/j.conbuildmat.2020.121748.
  • de Carvalho Pinto PC, da Silva TR, Linhares FM, et al. A integrated route for CO2 capture in the steel industry and its conversion into CaCO3 using fundamentals of Solvay process. Clean Techn Environ Policy. 2016;18(4):1123–1139. doi: 10.1007/s10098-016-1105-3.
  • Quang DV, Abdallah D, Mohammad RM. The utilization of CO2, alkaline solid waste, and desalination reject brine in soda ash production. In: CO2 separation, purification and conversion to chemicals and fuels. Vol. 1; 2019. p. 153–184. Berlin: Springer.
  • Bian Z, Jin G, Ji T. Effect of combined activator of Ca(OH)2 and Na2CO3 on workability and compressive strength of alkali-activated ferronickel slag system. Cem Concr Compos. 2021;123:104179. doi: 10.1016/j.cemconcomp.2021.104179.
  • Bernal SA, Provis JL, Myers RJ, et al. Role of carbonates in the chemical evolution of sodium carbonate-activated slag binders. Mater Struct. 2015;48(3):517–529. doi: 10.1617/s11527-014-0412-6.
  • Zhang J, Scherer GW. Comparison of methods for arresting hydration of cement. Cem Concr Res. 2011;41(10):1024–1036. doi: 10.1016/j.cemconres.2011.06.003.
  • Weerdt KD, Haha BM, Saout GL, et al. Hydration mechanisms of ternary Portland cements containing limestone powder and fly ash. Cement Concr Res. 2011;41(3):279–291. doi: 10.1016/j.cemconres.2010.11.014.
  • China National Standard GB/T1346-2011. Test method for water requirement of normal consistency, setting time and soundness of the Portland cement. Beijing: Standards Press of China, 2011.
  • China Professional Standards JC/T 603-2004. Standard test method for drying shrinkage of mortar. Beijing: China Building Material Industry Publishing House, 2004.
  • Wang YR, Cao YB, Ma YW, et al. Fresh and hardened properties of alkali-activated fly ash/slag binders: effect of fly ash source, surface area, and additives. J Sustain Cem-Based. 2022;11(4):234–249.
  • Shi C, Day RL. A calorimetric study of early hydration of alkali-slag cements. Cem Concr Res. 1995;25(6):1333–1346. doi: 10.1016/0008-8846(95)00126-W.
  • Ravikumar D, Neithalath N. Reaction kinetics in sodium silicate powder and liquid activated slag binders evaluated using isothermal calorimetry. Thermochim Acta. 2012;546:32–43. doi: 10.1016/j.tca.2012.07.010.
  • Fang S, Lam ESS, Li B, et al. Effect of alkali contents, moduli and curing time on engineering properties of alkali activated slag. Constr Build Mater. 2020;249(6):118799. doi: 10.1016/j.conbuildmat.2020.118799.
  • Haha MB, Saout GL, Winnefeld F, et al. Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cem Concr Res. 2011;41(3):301–310. doi: 10.1016/j.cemconres.2010.11.016.
  • Oh JE, Monteiro PJM, Jun SS, et al. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash-based geopolymers. Cem Concr Res. 2010;40(2):189–196. doi: 10.1016/j.cemconres.2009.10.010.
  • Kim MS, Jun Y, Lee C, et al. Use of CaO as an activator for producing a price-competitive non-cement structural binder using ground granulated blast furnace slag. Cem Concr Res. 2013;54:208–214. doi: 10.1016/j.cemconres.2013.09.011.
  • Gao X, Yao X, Yang T, et al. Calcium carbide residue as auxiliary activator for one-part sodium carbonate-activated slag cements: compressive strength, phase assemblage and environmental benefits. Constr Build Mater. 2021;308:125015. doi: 10.1016/j.conbuildmat.2021.125015.
  • Voglis N, Kakali G, Chaniotakis E, et al. Portland-limestone cements. Their properties and hydration compared to those of other composite cements. Cem Concr Compos. 2005;27(2):191–196. doi: 10.1016/j.cemconcomp.2004.02.006.
  • Winnefeld F, Haha BM, Saout GL, et al. Influence of slag composition on the hydration of alkali-activated slags. J Sustain Cem-Based. 2015;4(2):85–100. doi: 10.1080/21650373.2014.955550.
  • Yuan YZ, Niu KM, Tian B, et al. Effect of metakaolin on the diffusion properties of chloride ions in cement mortar under the coupling effect of multiple factors in marine environment. Adv Civ Eng. 2023;2023:1–15. doi: 10.1155/2023/6961234.
  • Zhang Y, Çopuroğlu O. Effect of Al2O3 content in slag on the relationship between slag reactivity and carbonation resistance. J Sustain Cem-Based. 2023. doi: 10.1080/21650373.2023.2250786.
  • Song KI, Song JK, Lee BY, et al. Carbonation characteristics of alkali-activated blast-furnace slag mortar. Adv Mater Sci Eng. 2014;2014:1–11. doi: 10.1155/2014/326458.
  • Abdalqader AF, Jin F, Al-Tabbaa A. Characterisation of reactive magnesia and sodium carbonate-activated fly ash/slag paste blends. Constr Build Mater. 2015;93:506–513. doi: 10.1016/j.conbuildmat.2015.06.015.
  • Li WY, Yin JH, Wang J, et al. Principles and applications of low-field nuclear magnetic resonance in cenmentitious materials. J Chinese Ceram Soc. 2020;50(11):2992–3008.
  • Wu M, Zhang YS, Jia YT, et al. Study on the role of activators to the autogenous and drying shrinkage of lime-based low carbon cementitious materials. J Clean Prod. 2020;257:120522. doi: 10.1016/j.jclepro.2020.120522.
  • Yang Z, Zhou C. Pore structure of water-Saturated cement mortars by low-field nuclear magnetic resonance. J Chinese Ceram Soc. 2022;50(5):1391–1400.
  • Sato T, Beaudoin JJ. Effect of nano-CaCO3 on hydration of cement containing supplementary cementitious materials. Adv Cem Res. 2011;23(1):33–43. doi: 10.1680/adcr.9.00016.
  • Yuan B, Yu QL, Dainese E, et al. Autogenous and drying shrinkage of sodium carbonate activated slag altered by limestone powder incorporation. Constr Build Mater. 2017;153:459–468. doi: 10.1016/j.conbuildmat.2017.07.112.
  • Chen WW, Xie Y, Li BX, et al. Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2021;299:124002. doi: 10.1016/j.conbuildmat.2021.124002.
  • Bazant ZP. Mathematical modelling of creep and shrinkage of concrete. American: Wiley, 1988.
  • Thomas RJ, Lezama D, Peethamparan S. On drying shrinkage in alkali-activated concrete: improving dimensional stability by aging or heat-curing. Cem Concr Res. 2017;91:13–23. doi: 10.1016/j.cemconres.2016.10.003.
  • Burciaga-Díaz O, Magallanes-Rivera LX, Escalante-García GI. Alkali-activated slag-metakaolin pastes: strength, structural, and microstructural characterization. J Sustain Cem-Based. 2013;2(2):111–127. doi: 10.1080/21650373.2013.801799.
  • Luukkonen T, Abdollahnejad Z, Ohenoja K, et al. Suitability of commercial superplasticizers for one-part alkali-activated blast-furnace slag mortar. J Sustain Cem-Based. 2019;8(4):244–257. doi: 10.1080/21650373.2019.1625827.
  • Chu I, Lee Y, Amin MN, et al. Application of a thermal stress device for the prediction of stresses due to hydration heat in mass concrete structure. Constr Build Mater. 2013;45(13):192–198. doi: 10.1016/j.conbuildmat.2013.03.056.
  • Hou D, Hu C, Li Z. Molecular simulation of the ions ultraconfined in the nanometer-channel of calcium silicate hydrate: hydration mechanism, dynamic properties, and influence on the cohesive strength. Inorg Chem. 2017;56(4):1881–1896. doi: 10.1021/acs.inorgchem.6b02456.
  • Benboudjema F, Meftah F, Torrenti JM. Interaction between drying, shrinkage, creep and cracking phenomena in concrete. Eng Struct. 2005;27(2):239–250. doi: 10.1016/j.engstruct.2004.09.012.
  • Granger L, Torrenti JM, Acker P. Thoughts about drying shrinkage: experimental results and quantification of structural drying creep. Mat Struct. 1997;30(10):588–598. doi: 10.1007/BF02486900.
  • Jaafri R, Aboulayt A, Alam SY, et al. Natural hydraulic lime for blended cement mortars: behavior from fresh to hardened states. Cem Concr Res. 2019;120:52–65. doi: 10.1016/j.cemconres.2019.03.003.
  • Adesanya E, Perumal P, Luukkonen T, et al. Opportunities to improve sustainability of alkali-activated materials: a review of side-stream based activators. J Clean Prod. 2021;286:125558. doi: 10.1016/j.jclepro.2020.125558.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.