171
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Hydration mechanism of anhydrite and calcium sulfoaluminate co-activated slag cement: insights into the role of composition

, , , , , , & ORCID Icon show all

References

  • Chitvoranund N. Stability of hydrate assemblages and properties of cementitious systems with higher alumina content. Lausanne: EPFL; 2021.
  • Crossin E. The greenhouse gas implications of using ground granulated blast furnace slag as a cement substitute. J Clean Prod. 2015;95:101–108. doi: 10.1016/j.jclepro.2015.02.082.
  • Wu K, Hu Y, Zhang L, et al. Promoting the sustainable fabrication of bricks from municipal sewage sludge through modifying calcination: microstructure and performance characterization. Constr Build Mater. 2022;324:126401. doi: 10.1016/j.conbuildmat.2022.126401.
  • Wu XQ, Zhu H, Hou XK, et al. Study on steel slag and fly ash composite Portland cement. Cement Concrete Res. 1999;29:1103–1106.
  • Lang L, Song C, Xue L, et al. Effectiveness of waste steel slag powder on the strength development and associated micro-mechanisms of cement-stabilized dredged sludge. Constr Build Mater. 2020;240:117975. doi: 10.1016/j.conbuildmat.2019.117975.
  • Chaurand P, Rose J, Briois V, et al. Environmental impacts of steel slag reused in road construction: a crystallographic and molecular (XANES) approach. J Hazard Mater. 2007;139(3):537–542. doi: 10.1016/j.jhazmat.2006.02.060.
  • Li G, Tan H, Zhang J, et al. Ground granulated blast-furnace slag/fly ash blends activated by sodium carbonate at ambient temperature. Constr Build Mater. 2021;291:123378. doi: 10.1016/j.conbuildmat.2021.123378.
  • Gardner LJ, Walling SA, Corkhill CL, et al. Temperature transformation of blended magnesium potassium phosphate cement binders. Cement Concrete Res. 2021;141:106332. doi: 10.1016/j.cemconres.2020.106332.
  • Song S, Sohn D, Jennings HM, et al. Hydration of alkali-activated ground granulated blast furnace slag. J Mater Sci. 2000;35(1):249–257. doi: 10.1023/A:1004742027117.
  • Li L, Ling T-C, Pan S-Y. Environmental benefit assessment of steel slag utilization and carbonation: a systematic review. Sci Total Environ. 2022;806(Pt 1):150280. doi: 10.1016/j.scitotenv.2021.150280.
  • Zhang S, Wang R, Xu L, et al. Property comparison of steel slag cement mortar with hydroxyethyl methyl cellulose having different degrees of substitution and PAAm modification. J Adhes Sci Technol. 2021;36(15):1618–1632.
  • Kürklü G. The effect of high temperature on the design of blast furnace slag and coarse fly ash-based geopolymer mortar. Compos Part B-Eng. 2016;92:9–18. doi: 10.1016/j.compositesb.2016.02.043.
  • Bakharev T, Sanjayan JG, Cheng YB. Sulfate attack on alkali-activated slag concrete. Cement Concrete Res. 2002;32(2):211–216. doi: 10.1016/S0008-8846(01)00659-7.
  • Mobasher N, Bernal SA, Provis JL. Structural evolution of an alkali sulfate activated slag cement. J Nucl Mater. 2016;468:97–104. doi: 10.1016/j.jnucmat.2015.11.016.
  • Cristelo N, Garcia-Lodeiro I, Rivera JF, et al. One-part hybrid cements from fly ash and electric arc furnace slag activated by sodium sulphate or sodium chloride. J Build Eng. 2021;44:103298. doi: 10.1016/j.jobe.2021.103298.
  • He W, Liu C, Zhang L. Effects of sodium chloride on the mechanical properties of slag composite matrix geopolymer. Adv Cem Res. 2019;31(9):389–398. doi: 10.1680/jadcr.18.00029.
  • Angulski da L, R. D H. Influence of curing temperature on the process of hydration of supersulfated cements at early age. Cement Concrete Res. 2015;77:69–75. doi: 10.1016/j.cemconres.2015.07.002.
  • Rashad AM, Bai Y, Basheer PAM, et al. Hydration and properties of sodium sulfate activated slag. Cement Concrete Comp. 2013;37:20–29. doi: 10.1016/j.cemconcomp.2012.12.010.
  • Masoudi R, Hooton RD. Examining the hydration mechanism of supersulfated cements made with high and low-alumina slags. Cement Concrete Comp. 2019;103:193–203. doi: 10.1016/j.cemconcomp.2019.05.001.
  • Bazaldua-Medellin ME, Fuentes AF, Gorokhovsky A, et al. Early and late hydration of supersulphated cements of blast furnace slag with fluorgypsum. Mater. construcc. 2015;65(317):e043. doi: 10.3989/mc.2015.06013.
  • Sun Z, Nie S, Zhou J, et al. Hydration mechanism of calcium sulfoaluminate-activated supersulfated cement. J Clean Prod. 2022;333:130094. doi: 10.1016/j.jclepro.2021.130094.
  • Li C, Sun H, Li L. A review: the comparison between alkali-activated slag (Si + Ca) and metakaolin (Si + Al) cements. Cement Concrete Res. 2010;40(9):1341–1349. doi: 10.1016/j.cemconres.2010.03.020.
  • Lannegrand R, Ramos G, Talero R. Condition of knowledge about the Friedel’s salt. Mater Construcc. 2001;51(262):63–71. doi: 10.3989/mc.2001.v51.i262.372.
  • Fu J, Jones AM, Bligh MW, et al. Mechanisms of enhancement in early hydration by sodium sulfate in a slag-cement blend – insights from pore solution chemistry. Cement Concrete Res. 2020;135:106110. doi: 10.1016/j.cemconres.2020.106110.
  • Kühl H, inventor. Verfahren zur Herstellung von Zement aus Hochofenschlacke. German Patent 237777. 1908.
  • Kondo R, Daimon M, Song C, et al. Effect of lime on the hydration of super-sulfated slag cement. Am Ceram Soc Bull. 1980;59:848–851.
  • Samanta C, Chatterjee M. Super-sulfated pozzolanic cement. Indian J Technol. 1977;15:490–493.
  • Majumdar A, Singh B, Evans T. Glass fiber-reinforced supersulfated cement. Composites. 1981;12(3):177–183. doi: 10.1016/0010-4361(81)90500-0.
  • Roy A, Samaddar BN. Strength increase of expansive slag—sulphate cement under constraint. J Mater Sci Lett. 1986;5(2):201–202. doi: 10.1007/BF01672050.
  • Singh M, Garg M. Activation of gypsum anhydrite-slag mixtures. Cement Concrete Res. 1995;25(2):332–338. doi: 10.1016/0008-8846(95)00018-6.
  • Michel M, Georgin J-F, Ambroise J, et al. The influence of gypsum ratio on the mechanical performance of slag cement accelerated by calcium sulfoaluminate cement. Constr Build Mater. 2011;25(3):1298–1304. doi: 10.1016/j.conbuildmat.2010.09.015.
  • Bellmann F, Stark J, Matschei T. Hydration behaviour of sulphate-activated slag cements. Adv Cem Res. 2005;17(4):167–178. doi: 10.1680/adcr.2005.17.4.167.
  • Bertola F, Gastaldi D, Irico S, et al. Influence of the amount of calcium sulfate on physical/mineralogical properties and carbonation resistance of CSA-based cements. Cem Concr Res. 2022;151:106634. doi: 10.1016/j.cemconres.2021.106634.
  • Magallanes-Rivera RX, Escalante-García JI. Anhydrite/hemihydrate-blast furnace slag cementitious composites: strength development and reactivity. Constr Build Mater. 2014;65:20–28. doi: 10.1016/j.conbuildmat.2014.04.056.
  • Rubert S, Angulski D, Varela MF, et al. Hydration mechanisms of supersulfated cement. J Therm Anal Calorim. 2018;134(2):971–980. doi: 10.1007/s10973-018-7243-6.
  • Gruskovnjak A, et al. Hydration mechanisms of super sulphated slag cement. Cement Concrete Res. 2008;38(7):983–992. [Internet]. [cited 2021 Nov 15]; Available from: http://www.sciencedirect.com/science/article/pii/S0008884608000574.
  • Pinto SR, da Luz CA, Munhoz GS, et al. Resistance of phosphogypsum-based supersulfated cement to carbonation and chloride ingress. Constr Build Mater. 2020;263:120640. doi: 10.1016/j.conbuildmat.2020.120640.
  • Pinto SR, da Luz CA, Munhoz GS, et al. Durability of phosphogypsum-based supersulfated cement mortar against external attack by sodium and magnesium sulfate. Cement Concrete Res. 2020;136:106172. doi: 10.1016/j.cemconres.2020.106172.
  • Dong Q. Mechanical properties of modified supersulfated cement mortar. CS. 2021;65(3):255–262.
  • Barnett SJ, Soutsos MN, Millard SG, et al. Strength development of mortars containing ground granulated blast-furnace slag: Effect of curing temperature and determination of apparent activation energies. Cement Concrete Res. 2006;36(3):434–440. doi: 10.1016/j.cemconres.2005.11.002.
  • Murmu M, Singh SP. Hydration products, morphology and microstructure of activated slag cement. Int J Concr Struct Mater. 2014;8(1):61–68. doi: 10.1007/s40069-013-0056-x.
  • Liu S, Han W, Li Q. Hydration properties of ground granulated blast-furnace slag (GGBS) under different hydration environments. ms. 2017;23(1):70–77. doi: 10.5755/j01.ms.23.1.14934.
  • Winnefeld F, Lothenbach B. Hydration of calcium sulfoaluminate cements—experimental findings and thermodynamic modelling. Cem Concr Res. 2010;40(8):1239–1247. doi: 10.1016/j.cemconres.2009.08.014.
  • Fu J, Bligh MW, Shikhov I, et al. A microstructural investigation of a Na2SO4 activated cement-slag blend. Cement Concrete Res. 2021;150:106609. doi: 10.1016/j.cemconres.2021.106609.
  • Scrivener KL, Patel HH, Pratt PL, et al. Analysis of phases in cement paste using backscattered electron images, methanol adsorption and thermogravimetric analysis. MRS Online Proceedings Library. 2021;85:67.
  • Kocaba V, Gallucci E, Scrivener KL. Methods for determination of degree of reaction of slag in blended cement pastes. Cement Concrete Res. 2012;42(3):511–525. doi: 10.1016/j.cemconres.2011.11.010.
  • Zhao H, Darwin D. Quantitative backscattered electron analysis of cement paste. Cem Concr Res. 1992;22(4):695–706. doi: 10.1016/0008-8846(92)90022-N.
  • Brough AR, Atkinson A. Sodium silicate-based, alkali-activated slag mortars part I. Strength, hydration and microstructure. Cement Concrete Res. 2002;32(6):865–879. doi: 10.1016/S0008-8846(02)00717-2.
  • Li Y, Guo W, Li H. Quantitative analysis on ground blast furnace slag behavior in hardened cement pastes based on backscattered electron imaging and image analysis technology. Constr Build Mater. 2016;110:48–53. doi: 10.1016/j.conbuildmat.2016.02.015.
  • Kulik DA, Wagner T, Dmytrieva SV, et al. GEM-Selektor geochemical modeling package: revised algorithm and GEMS3K numerical kernel for coupled simulation codes. Comput Geosci. 2013;17:1–24.
  • Lothenbach B, Kulik DA, Matschei T, et al. Cemdata18: a chemical thermodynamic database for hydrated Portland cements and alkali-activated materials. Cement Concrete Res. 2019;115:472–506. doi: 10.1016/j.cemconres.2018.04.018.
  • Zhen HE, Yang H, Shuguang HU, et al. Hydration mechanism of silica fume- sulphoaluminate cement. J Wuhan Univ Technol. 2013;28(6):1128-1133. doi: 10.1007/s11595-013-0832-0.
  • Wu K, Han H, Rößler C, et al. Rice hush ash as supplementary cementitious material for calcium aluminate cement – effects on strength and hydration. Constr Build Mater. 2021;302:124198. doi: 10.1016/j.conbuildmat.2021.124198.
  • Liu Z, Sha A, Hu L, et al. A laboratory study of Portland cement hydration under low temperatures. Road Mater Pavement. 2017;18(sup3):12–22. doi: 10.1080/14680629.2017.1329857.
  • Wang D, Wang Q, Huang Z. New insights into the early reaction of NaOH-activated slag in the presence of CaSO4. Compos Part B: Engin. 2020;198:108207. doi: 10.1016/j.compositesb.2020.108207.
  • Jiang D, Li X, Lv Y, et al. Autogenous shrinkage and hydration property of alkali activated slag pastes containing superabsorbent polymer. Cement Concrete Res. 2021;149:106581. doi: 10.1016/j.cemconres.2021.106581.
  • Taylor HFW. Cement chemistry. 2nd ed. London: T. Telford; 1997.
  • Skibsted J, Andersen MD. The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C-S-H) phase resulting from Portland cement hydration studied by Si-29 MAS NMR. J Am Ceram Soc. 2013;96(2):651–656. doi: 10.1111/jace.12024.
  • Dyson HM, Richardson IG, Brough AR. A combined 29Si MAS NMR and selective dissolution technique for the quantitative evaluation of hydrated blast furnace slag cement blends. J Am Ceram Soc. 2007;90(2):598–602. doi: 10.1111/j.1551-2916.2006.01431.x.
  • Brunet F, Charpentier T, Chao CN, et al. Characterization by solid-state NMR and selective dissolution techniques of anhydrous and hydrated CEM V cement pastes. Cement Concrete Res. 2010;40(2):208–219. doi: 10.1016/j.cemconres.2009.10.005.
  • Seo J, Kim S, Park S, et al. Carbonation of calcium sulfoaluminate cement blended with blast furnace slag. Cement Concrete Comp. 2021;118:103918. doi: 10.1016/j.cemconcomp.2020.103918.
  • Sun H, Qian J, Peng S, et al. Utilization of circulating fluidized bed combustion ash to prepare supersulfated cement. Constr Build Mater. 2022;318:125861. doi: 10.1016/j.conbuildmat.2021.125861.
  • Zhou Y, Peng Z, Chen L, et al. The influence of two types of alkali activators on the microstructure and performance of supersulfated cement concrete: mitigating the strength and carbonation resistance. Cement Concrete Comp. 2021;118:103947. doi: 10.1016/j.cemconcomp.2021.103947.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.