102
Views
2
CrossRef citations to date
0
Altmetric
Research Article

Optimization of the fresh and hardened properties of cement grouting material for semiflexible pavement using polypropylene fiber

, , , , , & show all

References

  • Zhao W, Yang Q. Life cycle assessment and multi-index performance evaluation of semi-flexible pavement after composite modification by using fly ash, rubber particles, warm mixing asphalt and recycled asphalt pavement. Constr Build Mater. 2023;364:129945. doi: 10.1016/j.conbuildmat.2022.129945.
  • Khan MI, Sutanto MH, Khan K, et al. Effective use of recycled waste PET in cementitious grouts for developing sustainable semi-flexible pavement surfacing using artificial neural network (ANN). J Clean Prod. 2022;340:130840. doi: 10.1016/j.jclepro.2022.130840.
  • Xu B, Ding R, Yang Z, et al. Investigation on performance of mineral-oil-based rejuvenating agent for aged high viscosity modified asphalt of porous asphalt pavement. J Clean Prod. 2023;395:136285. doi: 10.1016/j.jclepro.2023.136285.
  • Gong M, Xiong Z, Deng C, et al. Investigation on the impacts of gradation type and compaction level on the pavement performance of semi-flexible pavement mixture. Constr Build Mater. 2022;324:126562. doi: 10.1016/j.conbuildmat.2022.126562.
  • Zhao W, Yang Q. Study on the applicability of asphalt concrete skeleton in the semi-flexible pavement. Constr Build Mater. 2022;327:126923. doi: 10.1016/j.conbuildmat.2022.126923.
  • Fang Y, Wang X, Jia L, et al. Synergistic effect of polycarboxylate superplasticizer and silica fume on early properties of early high strength grouting material for semi-flexible pavement. Constr Build Mater. 2022;319:126065. doi: 10.1016/j.conbuildmat.2021.126065.
  • Pei J, Cai J, Zou D, et al. Design and performance validation of high-performance cement paste as a grouting material for semi-flexible pavement. Constr Build Mater. 2016;126:206–217. doi: 10.1016/j.conbuildmat.2016.09.036.
  • Celik F, Colak AB, Yildiz O, et al. An experimental investigation on workability and bleeding features. ACI Mater J. 2022;119:62–74.
  • Celik F, Yildiz O, Colak AB, et al. Analysing of nano-silica usage with fly ash for grouts with artificial neural network models. Adv Cem Res. 2022;35(5):191–206. doi: 10.1680/jadcr.21.00180.
  • Colak AB, Yildiz O, Celik F, et al. Developing prediction model on workability parameters of ultrasonicated nano silica (n-SiO2) and fly ash added cement-based grouts by using artificial neural networks. Adv Civ Eng Mater. 2022;11:115–137.
  • Celik F, Çolak AB, Yıldız O, et al. An experimental investigation of the effects of fly ash and nano titanium dioxide (n-TiO2) usage as viscosity modifying agents (VMAs) in cement-based grouts on rheological parameters. CEBACOM. 2022;3(1):1–11. doi: 10.36937/cebacom.2022.5624.
  • Zarei S, Ouyang J, Zhao Y. Evaluation of fatigue life of semi-flexible pavement with cement asphalt emulsion pastes. Constr Build Mater. 2022;349:128797. doi: 10.1016/j.conbuildmat.2022.128797.
  • Imran Khan M, Sutanto MH, Napiah MB, et al. Investigating the mechanical properties and fuel spillage resistance of semi-flexible pavement surfacing containing irradiated waste PET based grouts. Constr Build Mater. 2021;304:124641. doi: 10.1016/j.conbuildmat.2021.124641.
  • Ling S, Sun Y, Sun D, et al. Pore characteristics and permeability simulation of porous asphalt mixture in pouring semi-flexible pavement. Constr Build Mater. 2022;330:127253. doi: 10.1016/j.conbuildmat.2022.127253.
  • Chen Z, Qiao J, Yang X, et al. A review of grouting materials for pouring semi-flexible pavement: materials, design and performance. Constr Build Mater. 2023;379:131235. doi: 10.1016/j.conbuildmat.2023.131235.
  • Hassani A, Taghipoor M, Karimi MM. A state of the art of semi-flexible pavements: introduction, design, and performance. Constr Build Mater. 2020;253:119196. doi: 10.1016/j.conbuildmat.2020.119196.
  • Hamzani H, Munirwansyah M, Hasan M, et al. Determining the properties of semi-flexible pavement using waste tire rubber powder and natural zeolite. Constr Build Mater. 2021;266:121199. doi: 10.1016/j.conbuildmat.2020.121199.
  • Davoodi A, Aboutalebi Esfahani M, Bayat M, et al. Influence of nano-silica modified rubber mortar and EVA modified porous asphalt on the performance improvement of modified semi-flexible pavement. Constr Build Mater. 2022;337:127573. doi: 10.1016/j.conbuildmat.2022.127573.
  • Yang Q, Zhao W. Research on the crack resistance of semi-flexible pavement based on bonding and rheological properties of asphalt. Constr Build Mater. 2022;356:129093. doi: 10.1016/j.conbuildmat.2022.129093.
  • Yu Z, Zhao Y, Ba H, et al. Synergistic effects of ettringite-based expansive agent and polypropylene fiber on early-age anti-shrinkage and anti-cracking properties of mortars. J Build Eng. 2021;39:102275. doi: 10.1016/j.jobe.2021.102275.
  • Feng J, Su Y, Qian C. Coupled effect of PP fiber, PVA fiber and bacteria on self-healing efficiency of early-age cracks in concrete. Constr Build Mater. 2019;228:116810. doi: 10.1016/j.conbuildmat.2019.116810.
  • Bertelsen IMG, Belmonte LJ, Fischer G, et al. Influence of synthetic waste fibres on drying shrinkage cracking and mechanical properties of adobe materials. Constr Build Mater. 2021;286:122738. doi: 10.1016/j.conbuildmat.2021.122738.
  • Aghaee K, Khayat KH. Effect of shrinkage-mitigating materials on performance of fiber-reinforced concrete – an overview. Constr Build Mater. 2021;305:124586. doi: 10.1016/j.conbuildmat.2021.124586.
  • Shen Y, Dai M, Pu W, et al. Effects of content and length/diameter ratio of PP fiber on explosive spalling resistance of hybrid fiber-reinforced ultra-high-performance concrete. J Build Eng. 2022;58:105071. doi: 10.1016/j.jobe.2022.105071.
  • Feng Z, Shen D, Luo Y, et al. Effect of polypropylene fiber on early-age properties and stress relaxation of ultra-high-performance concrete under different degrees of restraint. J Build Eng. 2023;68:106035. doi: 10.1016/j.jobe.2023.106035.
  • Zhou L, Zheng Y, Yu Y, et al. Experimental study of mechanical and fresh properties of HVFA-SCC with and without PP fibers. Constr Build Mater. 2021;267:121010. doi: 10.1016/j.conbuildmat.2020.121010.
  • Tran MV, Cu YTH, Le CVH. Rheology and shrinkage of concrete using polypropylene fiber for 3D concrete printing. J Build Eng. 2021;44:103400. doi: 10.1016/j.jobe.2021.103400.
  • Alrshoudi F, Mohammadhosseini H, Tahir MM, et al. Drying shrinkage and creep properties of prepacked aggregate concrete reinforced with waste polypropylene fibers. J Build Eng. 2020;32:101522. doi: 10.1016/j.jobe.2020.101522.
  • Ma L, Zhang Q, Lombois-Burger H, et al. Pore structure, internal relative humidity, and fiber orientation of 3D printed concrete with polypropylene fiber and their relation with shrinkage. J Build Eng. 2022;61:105250. doi: 10.1016/j.jobe.2022.105250.
  • Zhang Z, Zhang J, Lu B-X, et al. Effect of flame retardants on mechanical properties, flammability and foamability of PP/wood–fiber composites. Compos B. 2012;43(2):150–158. doi: 10.1016/j.compositesb.2011.06.020.
  • Antico FC, Concha-Riedel J, Valdivia I, et al. The fracture mechanical behavior of the interface between animal fibers, mortar, and earth matrices. A theoretical and experimental approach. Compos B. 2023;254:110568. doi: 10.1016/j.compositesb.2023.110568.
  • Wang S, Yao Y, Tang C, et al. Mechanical characteristics, constitutive models and fracture behaviors of short basalt fiber reinforced thermoplastic composites under varying strain rates. Compos B. 2021;218:108933. doi: 10.1016/j.compositesb.2021.108933.
  • Wang P, Qiao H, Zhang Y, et al. Meso-damage evolution analysis of magnesium oxychloride cement concrete based on X-CT and grey-level co-occurrence matrix. Constr Build Mater. 2020;255:119373. doi: 10.1016/j.conbuildmat.2020.119373.
  • Chen Y, Jia L, Liu C, et al. Mechanical anisotropy evolution of 3D-printed alkali-activated materials with different GGBFS/FA combinations. J Build Eng. 2022;50:104126. doi: 10.1016/j.jobe.2022.104126.
  • Vasumithran M, Anand KB, Sathyan D. Effects of fillers on the properties of cement grouts. Constr Build Mater. 2020;246:118346. doi: 10.1016/j.conbuildmat.2020.118346.
  • Li Z. State of workability design technology for fresh concrete in Japan. Cem Concr Res. 2007;37(9):1308–1320. doi: 10.1016/j.cemconres.2007.05.001.
  • Leong GW, Mo KH, Loh ZP, et al. Mechanical properties and drying shrinkage of lightweight cementitious composite incorporating perlite microspheres and polypropylene fibers. Constr Build Mater. 2020;246:118410. doi: 10.1016/j.conbuildmat.2020.118410.
  • Guan X, Chen J, Qiu J, et al. Damage evaluation method based on ultrasound technique for gangue concrete under freezing-thawing cycles. Constr Build Mater. 2020;246:118437. doi: 10.1016/j.conbuildmat.2020.118437.
  • Xue G, Yilmaz E, Song W, et al. Fiber length effect on strength properties of polypropylene fiber reinforced cemented tailings backfill specimens with different sizes. Constr Build Mater. 2020;241:118113. doi: 10.1016/j.conbuildmat.2020.118113.
  • Luo J, Li Q, Zhao T, et al. Bonding and toughness properties of PVA fibre reinforced aqueous epoxy resin cement repair mortar. Constr Build Mater. 2013;49:766–771. doi: 10.1016/j.conbuildmat.2013.08.052.
  • Pham PN, Zhuge Y, Turatsinze A, et al. Application of rubberized cement-based composites in pavements: suitability and considerations. Constr Build Mater. 2019;223:1182–1195. doi: 10.1016/j.conbuildmat.2019.08.007.
  • Ma Y, Ye G. The shrinkage of alkali activated fly ash. Cem Concr Res. 2015;68:75–82. doi: 10.1016/j.cemconres.2014.10.024.
  • Chen W, Xie Y, Li B, et al. Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2021;299:124002. doi: 10.1016/j.conbuildmat.2021.124002.
  • Vafaei D, Ma X, Hassanli R, et al. Microstructural behaviour and shrinkage properties of high-strength fiber-reinforced seawater sea-sand concrete. Constr Build Mater. 2022;320:126222. doi: 10.1016/j.conbuildmat.2021.126222.
  • Karahan O, Atiş CD. The durability properties of polypropylene fiber reinforced fly ash concrete. Mater Des. 2011;32(2):1044–1049. doi: 10.1016/j.matdes.2010.07.011.
  • Wang Y, He F, Wang J, et al. Effects of calcium bicarbonate on the properties of ordinary Portland cement paste. Constr Build Mater. 2019;225:591–600. doi: 10.1016/j.conbuildmat.2019.07.262.
  • Jin S, Zhou J, Zhao X, et al. Quantitative relationship between pore size distribution and compressive strength of cementitious materials. Constr Build Mater. 2021;273:121727. doi: 10.1016/j.conbuildmat.2020.121727.
  • Rostami R, Zarrebini M, Mandegari M, et al. A review on performance of polyester fibers in alkaline and cementitious composites environments. Constr Build Mater. 2020;241:117998. doi: 10.1016/j.conbuildmat.2020.117998.
  • Feng J, Yang F, Qian S. Improving the bond between polypropylene fiber and cement matrix by nano calcium carbonate modification. Constr Build Mater. 2021;269:121249. doi: 10.1016/j.conbuildmat.2020.121249.
  • Lin C, Kanstad T, Jacobsen S, et al. Bonding property between fiber and cementitious matrix: a critical review. Constr Build Mater. 2023;378:131169. doi: 10.1016/j.conbuildmat.2023.131169.
  • Wu B, Qiu J. Enhancing the hydrophobic PP fiber/cement matrix interface by coating nano-AlOOH to the fiber surface in a facile method. Cem Concr Compos. 2022;125:104297. doi: 10.1016/j.cemconcomp.2021.104297.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.