80
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The influence of additive MgO and its content on the carbonation resistance of alkali-activated slag concrete with different activators

ORCID Icon, , , , &

References

  • Ali MB, Saidur R, Hossain MS. A review on emission analysis in cement industries. Renew Sust Energ Rev. 2011;15(5):2252–2261. doi:10.1016/j.rser.2011.02.014.
  • Roy DM. Alkali-activated cements opportunities and challenges. Cem Concr Res. 1999;29(2):249–254. doi:10.1016/S0008-8846(98)00093-3.
  • Provis JL, Palomo A, Shi C. Advances in understanding alkali-activated materials. Cem Concr Res. 2015;78:110–125. doi:10.1016/j.cemconres.2015.04.013.
  • Bakharev T, Sanjayan JG, Cheng YB. Resistance of alkali-activated slag concrete to acid attack. Cem Concr Res. 2003;33(10):1607–1611. doi:10.1016/S0008-8846(03)00125-X.
  • Shi C, Roy D, Krivenko P. Alkali-activated cements and concretes. CRC Press; 2003;21:392. doi: 10.1201/9781482266900.
  • Thomas JJ, Allen AJ, Jennings HM. Density and water content of nanoscale solid C–S–H formed in alkali-activated slag (AAS) paste and implications for chemical shrinkage. Cem Concr Res. 2012;42(2):377–383. doi:10.1016/j.cemconres.2011.11.003.
  • Puertas F, Gutierrez R, Fernández-Jiménez A, et al. Alkaline cement mortars. Chemical resistance to sulfate and seawater attack. Mater Construcc. 2002;52(267):55–71. doi:10.3989/mc.2002.v52.i267.326.
  • Palacios M, Puertas F. Effect of carbonation on alkali-activated slag paste. J Am Ceram Soc. 2006;89(10):3211–3221. doi:10.1111/j.1551-2916.2006.01214.x.
  • Bakharev T, Sanjayan JG, Cheng Y-B. Resistance of alkali-activated slag concrete to carbonation. Cem Concr Res. 2001;31(9):1277–1283. doi:10.1016/S0008-8846(01)00574-9.
  • El-Hassan H, Shehab E, Al-Sallamin A. Influence of different curing regimes on the performance and microstructure of alkali-activated slag concrete. J Mater Civ Eng. 2018;30(9):0401-8230. doi:10.1061/(ASCE)MT.1943-5533.0002436.
  • Shi Z, Shi C, Wan S, et al. Effect of alkali dosage and silicate modulus on carbonation of alkali-activated slag mortars. Cem Concr Res. 2018;113:55–64. doi:10.1016/j.cemconres.2018.07.005.
  • Puertas F, Palacios M, Vázquez T. Carbonation process of alkali-activated slag mortars. J Mater Sci. 2005;41(10):3071–3082. doi:10.1007/s10853-005-1821-2.
  • Bernal SA. Effect of the activator dose on the compressive strength and accelerated carbonation resistance of alkali silicate-activated slag/metakaolin blended materials. Constr Build Mater. 2015;98:217–226. doi:10.1016/j.conbuildmat.2015.08.013.
  • Bilim C, Karahan O, Atiş CD, et al. Influence of admixtures on the properties of alkali-activated slag mortars subjected to different curing conditions. Mater Des. 2013;44:540–547. doi:10.1016/j.matdes.2012.08.049.
  • Li N, Farzadnia N, Shi C. Microstructural changes in alkali-activated slag mortars induced by accelerated carbonation. Cem Concr Res. 2017;100:214–226. doi:10.1016/j.cemconres.2017.07.008.
  • Byfors K, Klingstedt G, Lehtonen V, et al. Durability of concrete made with alkali-activated slag. International Conference Fly Ash, 1989.
  • He J, Yang CH. Influence of carbonation on microstructure of alkali-activated slag cement pastes. J Build Mater. 2012;15(1):126–130.
  • He J. Study on carbonation process of alkali-activated slag cement pastes. J Huazh Univ Ence Technol. Nat. Ence Ed. 2011;39(5):29–33.
  • He J, Gao Q, Wu Y, et al. Study on improvement of carbonation resistance of alkali-activated slag concrete. Constr Build Mater. 2018;176:60–67. doi:10.1016/j.conbuildmat.2018.04.117.
  • Yuan X-h, Chen W, Lu Z-A, et al. Shrinkage compensation of alkali-activated slag concrete and microstructural analysis. Constr Build Mater. 2014;66:422–428. doi:10.1016/j.conbuildmat.2014.05.085.
  • Park SM, Jang JG, Lee HK. Unlocking the role of MgO in the carbonation of alkali-activated slag cement. Inorg Chem Front. 2018;5(7):1661–1670. doi:10.1039/C7QI00754J.
  • Bernal SA, San Nicolas R, Myers RJ, et al. MgO content of slag controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem Concr Res. 2014;57:33–43. doi:10.1016/j.cemconres.2013.12.003.
  • Morandeau AE, White CE. The role of magnesium-stabilized amorphous calcium carbonate in mitigating the extent of carbonation in alkali-activated slag. Chem Mater. 2015;27(19):6625–6634. doi:10.1021/acs.chemmater.5b02382.
  • Standard C, China Industry Standards YB/T 4019-2006. Test methods for chemical acticity of caustic burned magnesia. Beijing; 2006.
  • Jin F, Gu K, Al-Tabbaa A. Strength and drying shrinkage of reactive MgO modified alkali-activated slag paste. Constr Build Mater. 2014;51:395–404. doi:10.1016/j.conbuildmat.2013.10.081.
  • Standard C, China National Standards GB/T 50081-2002. Standard for test method of mechanical properties on ordinary concrete. Beijing; 2002.
  • Brew DRM, Glasser FP. Synthesis and characterisation of magnesium silicate hydrate gels. Cem Concr Res. 2005;35(1):85–98. doi:10.1016/j.cemconres.2004.06.022.
  • Lee NK, Koh KT, Kim MO, et al. Physicochemical changes caused by reactive MgO in alkali-activated fly ash/slag blends under accelerated carbonation. Ceram Int. 2017;43(15):12490–12496. doi:10.1016/j.ceramint.2017.06.119.
  • Jin F, Al-Tabbaa A. Thermogravimetric study on the hydration of reactive magnesia and silica mixture at room temperature. Thermochim Acta. 2013;566:162–168. doi:10.1016/j.tca.2013.05.036.
  • Mo L, Zhang F, Deng M. Mechanical performance and microstructure of the calcium carbonate binders produced by carbonating steel slag paste under CO2 curing. Cem Concr Res. 2016;88:217–226. doi:10.1016/j.cemconres.2016.05.013.
  • Panesar DK, Mo L. Properties of binary and ternary reactive MgO mortar blends subjected to CO2 curing, phys. Cement Con Compos. 2013;38:40–49. doi:10.1016/j.cemconcomp.2013.03.009.
  • Jin F, Gu K, Al-Tabbaa A. Strength and hydration properties of reactive MgO-activated ground granulated blastfurnace slag paste. Cem Concr Compos. 2015;57:8–16. doi:10.1016/j.cemconcomp.2014.10.007.
  • Tartaglione G, Tabuani D, Camino G. Thermal and morphological characterisation of organically modified sepiolite. Microp Mesop Mat. 2008;107(1–2):161–168. doi:10.1016/j.micromeso.2007.04.020.
  • Dweck J, Ferreira da Silva PF, Büchler PM, et al. F.K.Cartledge, study by thermogravimetry of the evolution of ettringite phase during type II Portland cement hydration. J Therm Anal Calorim. 2002;69(1):179–186. doi:10.1023/A:1019950126184.
  • Mo L, Panesar DK. Effects of accelerated carbonation on the microstructure of Portland cement pastes containing reactive MgO. Cem Concr Res. 2012;42(6):769–777. doi:10.1016/j.cemconres.2012.02.017.
  • Samtani M, Dollimore D, Alexander KS. Comparison of dolomite decomposition kinetics with related carbonates and the effect of procedural variables on its kinetic parameters. Thermochim Acta. 2002;392–393:135–145. doi:10.1016/S0040-6031(02)00094-1.
  • Puertas F, Torres-Carrasco M. Use of glass waste as an activator in the preparation of alkali-activated slag. Mechanical strength and paste characterisation. Cem Concr Res. 2014;57:95–104. doi:10.1016/j.cemconres.2013.12.005.
  • Ngal CV. Effects of carbonation on pore structure and diffusional properties of hydrated cement pastes. Cem Concr Res. 1997;27(7):995–1007.
  • Pardal X, Brunet F, Charpentier T, et al. 27Al and 29Si solid-state NMR characterization of calcium-aluminosilicate-hydrate. Inorg Chem. 2012;51(3):1827–1836. doi:10.1021/ic202124x.
  • Sun GK, Young JF, Kirkpatrick RJ. The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res. 2006;36(1):18–29. doi:10.1016/j.cemconres.2005.03.002.
  • Le Saoût G, Ben Haha M, Winnefeld F, et al. Hydration degree of alkali-activated slags: a 29Si NMR study. J Am Ceram Soc. 2011;94(12):4541–4547. doi:10.1111/j.1551-2916.2011.04828.x.
  • Bernal SA, Provis JL, Walkley B, et al. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem Concr Res. 2013;53:127–144. doi:10.1016/j.cemconres.2013.06.007.
  • Walspurger S, Cobden PD, Safonova OV, et al. High CO2 storage capacity in alkali-promoted hydrotalcite-Based material: in situ detection of reversible formation of magnesium carbonate. Chemistry. 2010;16(42):12694–12700. doi:10.1002/chem.201000687.
  • Manzano H, Dolado JS, Griebel M, et al. A molecular dynamics study of the aluminosilicate chains structure in Al-rich calcium silicate hydrated (C-S-H) gels. Cement Conc Comp. 2008;205(6):1324–1329. doi:10.1002/pssa.200778175.
  • Puertas F, Palacios M, Manzano H, et al. A model for the C-A-S-H gel formed in alkali-activated slag cements. J Eur Ceram Soc. 2011;31(12):2043–2056. doi:10.1016/j.jeurceramsoc.2011.04.036.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.