90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Preparation and properties of calcium aluminum silicate hydrate–polycarboxylate nanocomposites (CASH–PCE)

, , & ORCID Icon

References

  • García-Taengua E, Sonebi M, Crossett P, et al. Performance of sustainable SCC mixes with mineral additions for use in precast concrete industry. J Sustain Cem Based Mater. 2016;5(3):157–175. doi:10.1080/21650373.2015.1024297.
  • Hassan A, Jones S, Mahmud G. Experimental test methods to determine the uniaxial tensile and compressive behaviour of ultra high performance fibre reinforced concrete (UHPFRC). Constr Build Mater. 2012;37:874–882. doi:10.1016/j.conbuildmat.2012.04.030.
  • Al-Wakeel EI, El-Korashy SA, El-Hemaly SA, et al. Promotion effect of C–S–H-phase nuclei on building calcium silicate hydrate phases. Cem Concr Compos. 1999;21(3):173–180. doi:10.1016/S0958-9465(98)00043-2.
  • Lothenbach B, Nonat A. Calcium silicate hydrates: solid and liquid phase composition. Cem Concr Res. 2015;78:57–70. doi:10.1016/j.cemconres.2015.03.019.
  • John E, Matschei T, Stephan D. Nucleation seeding with calcium silicate hydrate – a review. Cem Concr Res. 2018;113:74–85. doi:10.1016/j.cemconres.2018.07.003.
  • Plank J, Sakai E, Miao CW, et al. Chemical admixtures—chemistry, applications and their impact on concrete microstructure and durability. Cem Concr Res. 2015;78:81–99. doi:10.1016/j.cemconres.2015.05.016.
  • Matsuyama H, Young JF. Synthesis of calcium silicate hydrate/polymer complexes: part I. Anionic and nonionic polymers. J Mater Res. 1999;14(8):3379–3388. doi:10.1557/JMR.1999.0458.
  • Popova A, Geoffroy G, Renou-Gonnord M-F, et al. Interactions between polymeric dispersants and calcium silicate hydrates. J Am Ceram Soc. 2000;83(10):2556–2560. doi:10.1111/j.1151-2916.2000.tb01590.x.
  • Nicoleau L, Gädt T, Chitu L, et al. Oriented aggregation of calcium silicate hydrate platelets by the use of comb-like copolymers. Soft Matter. 2013;9(19):4864–4874. doi:10.1039/c3sm00022b.
  • Alizadeh R, Beaudoin JJ, Raki L, et al. C–S–H/polyaniline nanocomposites prepared by in situ polymerization. J Mater Sci. 2011;46(2):460–467. doi:10.1007/s10853-010-4918-1.
  • Theobald M, Plank J. β-Naphthalene sulfonate formaldehyde-based nanocomposites as new seeding materials for Portland cement. Constr Build Mater. 2020;264:120240. doi:10.1016/j.conbuildmat.2020.120240.
  • Plank J, Meyer L. New insights into physicochemical interactions occurring between polycarboxylate superplasticizers and a stabilizer in self-compacting concrete. J Sustain Cem Based Mater. 2015;4(3–4):164–175. doi:10.1080/21650373.2015.1024296.
  • Ma Y, Sha S, Zhou B, et al. Adsorption and dispersion capability of polycarboxylate-based superplasticizers: a review. J Sustain Cem Based Mater. 2022;11(5):319–344. doi:10.1080/21650373.2021.1983483.
  • Plank J, Yang F, Storcheva O. Study of the interaction between cement phases and polycarboxylate superplasticizers possessing silyl functionalities. J Sustain Cem Based Mater. 2014;3(2):77–87. doi:10.1080/21650373.2014.903382.
  • Kanchanason V, Plank J. Role of pH on the structure, composition and morphology of C–S–H–PCE nanocomposites and their effect on early strength development of Portland cement. Cem Concr Res. 2017;102:90–98. doi:10.1016/j.cemconres.2017.09.002.
  • Kanchanason V, Plank J. Effect of calcium silicate hydrate–polycarboxylate ether (C–S–H–PCE) nanocomposite as accelerating admixture on early strength enhancement of slag and calcined clay blended cements. Cem Concr Res. 2019;119:44–50. doi:10.1016/j.cemconres.2019.01.007.
  • Kanchanason V, Plank J. Effectiveness of a calcium silicate hydrate–polycarboxylate ether (C–S–H–PCE) nanocomposite on early strength development of fly ash cement. Constr Build Mater. 2018;169:20–27. doi:10.1016/j.conbuildmat.2018.01.053.
  • Zhang J-L, Wang Z-M, Yao Y-h, et al. The effect and mechanism of C–S–H–PCE nanocomposites on the early strength of mortar under different water-to-cement ratio. J Build Eng. 2021;44:103360. doi:10.1016/j.jobe.2021.103360.
  • Wang F, Kong X, Wang D, et al. The effects of nano-C–S–H with different polymer stabilizers on early cement hydration. J Am Ceram Soc. 2019;102(9):5103–5116. doi:10.1111/jace.16425.
  • McLellan BC, Williams RP, Lay J, et al. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J Clean Prod. 2011;19(9–10):1080–1090. doi:10.1016/j.jclepro.2011.02.010.
  • García-Lodeiro I, Fernández-Jimenez A, Palomo A, et al. Effect on fresh C–S–H gels of the simultaneous addition of alkali and aluminium. Cem Concr Res. 2010;40(1):27–32.
  • Renaudin G, Russias J, Leroux F, et al. Structural characterization of C–S–H and C–A–S–H samples—part II: local environment investigated by spectroscopic analyses. J Solid State Chem. 2009;182(12):3320–3329. doi:10.1016/j.jssc.2009.09.024.
  • L’Hôpital E, Lothenbach B, Le Saout G, et al. Incorporation of aluminium in calcium–silicate–hydrates. Cem Concr Res. 2015;75:91–103. doi:10.1016/j.cemconres.2015.04.007.
  • Sun GK, Young JF, Kirkpatrick RJ. The role of Al in C–S–H: NMR, XRD, and compositional results for precipitated samples. Cem Concr Res. 2006;36(1):18–29. doi:10.1016/j.cemconres.2005.03.002.
  • Zou F, Zhang M, Hu C, et al. Novel C–A–S–H/PCE nanocomposites: design, characterization and the effect on cement hydration. Chem Eng J. 2021;412:128569. doi:10.1016/j.cej.2021.128569.
  • Zhu H, Zhang M, Zou F, et al. Calcium–silicate–hydrates/polycarboxylate ether nanocomposites doped by magnesium: enhanced stability and accelerating effect on cement hydration. J Am Ceram Soc. 2022;105(7):4930–4941. doi:10.1111/jace.18383.
  • Schönlein M, Plank J. A TEM study on the very early crystallization of CSH in the presence of polycarboxylate superplasticizers: transformation from initial CSH globules to nanofoils. Cem Concr Res. 2018;106:33–39. doi:10.1016/j.cemconres.2018.01.017.
  • Zhang J, Ma Y, Huang J, et al. Influence of novel shrinkage-reducing polycarboxylate superplasticizer on the nature of calcium–silicate–hydrates. J Am Ceram Soc. 2023;106(3):2139–2154. doi:10.1111/jace.18868.
  • Kapeluszna E, Kotwica Ł, Różycka A, et al. Incorporation of Al in C–A–S–H gels with various Ca/Si and Al/Si ratio: microstructural and structural characteristics with DTA/TG, XRD, FTIR and TEM analysis. Constr Build Mater. 2017;155:643–653. doi:10.1016/j.conbuildmat.2017.08.091.
  • Haas J, Nonat A. From C–S–H to C–a–S–H: experimental study and thermodynamic modelling. Cem Concr Res. 2015;68:124–138. doi:10.1016/j.cemconres.2014.10.020.
  • Komarneni S, Tsuji M. Selective cation-exchange in substituted tobermorites. J Am Ceram Soc. 1989;72(9):1668–1674. doi:10.1111/j.1151-2916.1989.tb06301.x.
  • Andersen MD, Jakobsen HJ, Skibsted J. A new aluminium-hydrate species in hydrated Portland cements characterized by 27Al and 29Si MAS NMR spectroscopy. Cem Concr Res. 2006;36(1):3–17. doi:10.1016/j.cemconres.2005.04.010.
  • Skibsted J, Andersen MD, Jennings H. The effect of alkali ions on the incorporation of aluminum in the calcium silicate hydrate (C–S–H) phase resulting from Portland cement hydration studied by 29Si MAS NMR. J Am Ceram Soc. 2013;96(2):651–656. doi:10.1111/jace.12024.
  • Pardal X, Pochard I, Nonat A. Experimental study of Si–Al substitution in calcium–silicate–hydrate (C–S–H) prepared under equilibrium conditions. Cem Concr Res. 2009;39(8):637–643. doi:10.1016/j.cemconres.2009.05.001.
  • Sobolev K. Modern developments related to nanotechnology and nanoengineering of concrete. Front Struct Civ Eng. 2016;10(2):131–141. doi:10.1007/s11709-016-0343-0.
  • L’Hôpital E, Lothenbach B, Kulik DA, et al. Influence of calcium to silica ratio on aluminium uptake in calcium silicate hydrate. Cem Concr Res. 2016;85:111–121. doi:10.1016/j.cemconres.2016.01.014.
  • Roosz C, Gaboreau S, Grangeon S, et al. Distribution of water in synthetic calcium silicate hydrates. Langmuir. 2016;32(27):6794–6805. doi:10.1021/acs.langmuir.6b00878.
  • Sun J, Shi H, Qian B, et al. Effects of synthetic C–S–H/PCE nanocomposites on early cement hydration. Constr Build Mater. 2017;140:282–292. doi:10.1016/j.conbuildmat.2017.02.075.
  • Yu P, Kirkpatrick RJ, Poe B, et al. Structure of calcium silicate hydrate (C–S–H): near-, mid-, and far-infrared spectroscopy. J Am Ceram Soc. 2004;82(3):742–748. doi:10.1111/j.1151-2916.1999.tb01826.x.
  • Zhang J, Wang Z, Liu X, et al. Microstructure and properties of C–S–H synthesized in the presence of polycarboxylate superplasticizer. Arab J Sci Eng. 2023;48(1):1041–1052. doi:10.1007/s13369-022-07344-w.
  • Lodeiro IG, Macphee D, Palomo A, et al. Effect of alkalis on fresh C–S–H gels. FTIR analysis. Cem Concr Res. 2009;39(3):147–153.
  • Plank J, Hirsch C. Impact of zeta potential of early cement hydration phases on superplasticizer adsorption. Cem Concr Res. 2007;37(4):537–542. doi:10.1016/j.cemconres.2007.01.007.
  • Kim B-G, Jiang S, Jolicoeur C, et al. The adsorption behavior of PNS superplasticizer and its relation to fluidity of cement paste. Cem Concr Res. 2000;30(6):887–893. doi:10.1016/S0008-8846(00)00256-8.
  • Orozco CA, Chun BW, Geng G, et al. Characterization of the bonds developed between calcium silicate hydrate and polycarboxylate-based superplasticizers with silyl functionalities. Langmuir. 2017;33(14):3404–3412. doi:10.1021/acs.langmuir.6b04368.
  • Sowoidnich T, Rachowski T, Rößler C, et al. Calcium complexation and cluster formation as principal modes of action of polymers used as superplasticizer in cement systems. Cem Concr Res. 2015;73:42–50. doi:10.1016/j.cemconres.2015.01.016.
  • Hou D, Ji X, Wang P, et al. Atypical adsorption of polycarboxylate superplasticizers on calcium silicate hydrate surface: converting interaction by solvent effects. Constr Build Mater. 2022;330:127160. doi:10.1016/j.conbuildmat.2022.127160.
  • Nonat A. The structure and stoichiometry of CSH. Cem Concr Res. 2004;34(9):1521–1528. doi:10.1016/j.cemconres.2004.04.035.
  • Dalas F, Nonat A, Pourchet S, et al. Tailoring the anionic function and the side chains of comb-like superplasticizers to improve their adsorption. Cem Concr Res. 2015;67:21–30. doi:10.1016/j.cemconres.2014.07.024.
  • Pardal X, Brunet F, Charpentier T, et al. 27Al and 29Si solid-state NMR characterization of calcium–aluminosilicate–hydrate. Inorg Chem. 2012;51(3):1827–1836. doi:10.1021/ic202124x.
  • Zhang Y, Kong X. Correlations of the dispersing capability of NSF and PCE types of superplasticizer and their impacts on cement hydration with the adsorption in fresh cement pastes. Cem Concr Res. 2015;69:1–9. doi:10.1016/j.cemconres.2014.11.009.
  • Jennings HM. A model for the microstructure of calcium silicate hydrate in cement paste. Cem Concr Res. 2000;30(1):101–116. doi:10.1016/S0008-8846(99)00209-4.
  • Jennings H. The colloid/nanogranular nature of cement paste and properties; 2009.
  • Jennings HM. Refinements to colloid model of C–S–H in cement: CM-II. Cem Concr Res. 2008;38(3):275–289. doi:10.1016/j.cemconres.2007.10.006.
  • Jennings H. The colloid/nanogranular nature of cement paste and properties. In: Nanotechnology in Construction 3: Proceedings of the NICOM3. Berlin, Heidelberg: Springer Berlin Heidelberg; 2009. p. 27–36.
  • Plank J, SchöNlein M, Kanchanason V. Study on the early crystallization of calcium silicate hydrate (C–S–H) in the presence of polycarboxylate superplasticizers. J Organomet Chem. 2018;869(15):227–232. doi:10.1016/j.jorganchem.2018.02.005.
  • Tran NP, Nguyen TN, Ngo TD. The role of organic polymer modifiers in cementitious systems towards durable and resilient infrastructures: a systematic review. Constr Build Mater. 2022;360:129562. doi:10.1016/j.conbuildmat.2022.129562.
  • Yoshioka K, Sakai E, Daimon M, et al. Role of steric hindrance in the performance of superplasticizers in concrete. J Am Ceram Soc. 1997;10:2667–2671.
  • Barnes P. Structure and performance of cements. 2nd edn. London: CRC Press; 2002. p. 89–100.
  • Scrivener KL, Nonat A. Hydration of cementitious materials, present and future. Cem Concr Res. 2011;41(7):651–665. doi:10.1016/j.cemconres.2011.03.026.
  • Kong D, Huang S, Corr D, et al. Whether do nano-particles act as nucleation sites for C–S–H gel growth during cement hydration? Cem Concr Compos. 2018;87:98–109. doi:10.1016/j.cemconcomp.2017.12.007.
  • Land G, Stephan D. The effect of synthesis conditions on the efficiency of C–S–H seeds to accelerate cement hydration. Cem Concr Compos. 2018;87:73–78. doi:10.1016/j.cemconcomp.2017.12.006.
  • Zhang Y-R, Kong X-M, Lu Z-B, et al. Effects of the charge characteristics of polycarboxylate superplasticizers on the adsorption and the retardation in cement pastes. Cem Concr Res. 2015;67:184–196. doi:10.1016/j.cemconres.2014.10.004.
  • Zou F, Hu C, Wang F, et al. Enhancement of early-age strength of the high content fly ash blended cement paste by sodium sulfate and C–S–H seeds towards a greener binder. J Clean Prod. 2019;244:118566.
  • Monteagudo SM, Moragues A, Gálvez JC, et al. The degree of hydration assessment of blended cement pastes by differential thermal and thermogravimetric analysis. Morphological evolution of the solid phases. Thermochim Acta. 2014;592:37–51. doi:10.1016/j.tca.2014.08.008.
  • Bhatty JI. Hydration versus strength in a Portland cement developed from domestic mineral wastes—a comparative study. Thermochim Acta. 1986;106:93–103. doi:10.1016/0040-6031(86)85120-6.
  • Pane I, Hansen W. Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cem Concr Res. 2005;35(6):1155–1164. doi:10.1016/j.cemconres.2004.10.027.
  • Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res. 2003;33(1):155–164. doi:10.1016/S0008-8846(02)00942-0.
  • Land G, Stephan D. The influence of nano-silica on the hydration of ordinary Portland cement. J Mater Sci. 2012;47(2):1011–1017. doi:10.1007/s10853-011-5881-1.
  • Monteiro PJ, Geng G, Marchon D, et al. Advances in characterizing and understanding the microstructure of cementitious materials. Cem Concr Res. 2019;124:105806. doi:10.1016/j.cemconres.2019.105806.
  • Thomas JJ, Jennings HM, Chen JJ. Influence of nucleation seeding on the hydration mechanisms of tricalcium silicate and cement. J Phys Chem C. 2009;113(11):4327–4334. doi:10.1021/jp809811w.
  • Land G, Stephan D. Controlling cement hydration with nanoparticles. Cem Concr Compos. 2015;57:64–67. doi:10.1016/j.cemconcomp.2014.12.003.
  • Sun J, Dong H, Wu J, et al. Properties evolution of cement-metakaolin system with C–S–H/PCE nanocomposites. Constr Build Mater. 2021;282:122707. doi:10.1016/j.conbuildmat.2021.122707.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.