83
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Experimental study on macro–micro-structural properties and strength prediction model of wastewater concrete

, , , , , & show all

References

  • Ghrair AM, Heath A, Paine K, et al. Waste wash-water recycling in ready mix concrete plants. Environments. 2020;7(12):108. doi: 10.3390/environments7120108.
  • Yao XH, Xu ZW, Guan JF, et al. Influence of wastewater content on mechanical properties, microstructure, and durability of concrete. Buildings. 2022;12(9):1343. doi: 10.3390/buildings12091343.
  • Klus L, Václavík V, Dvorský T, et al. The properties of waste water from a concrete plant. IOP Conf Ser Earth Environ Sci. 2017;92(1):012028. doi: 10.1088/1755-1315/92/1/012028.
  • Aboelkheir MG, Pal K, Cardoso VA, et al. Influence of concrete mixer washing waste water on the chemical and mechanical properties of mortars. J Mol Struct. 2021;1232:130003. doi: 10.1016/j.molstruc.2021.130003.
  • Chatveera B, Lertwattanaruk P, Makul N. Effect of sludge water from ready-mixed concrete plant on properties and durability of concrete. Cem Concr Compos. 2006;28(5):441–450. doi: 10.1016/j.cemconcomp.2006.01.001.
  • Chatveera B, Lertwattanaruk P. Use of ready-mixed concrete plant sludge water in concrete containing an additive or admixture. J Environ Manage. 2009;90(5):1901–1908. doi: 10.1016/j.jenvman.2009.01.008.
  • Kaur R, Bhatrola K, Kumar A, et al. Durability of cementitious mortar: incorporation of highly dispersed superplasticizer modified graphene oxide in fly ash blended mortar. J Build Eng. 2023;80:107888. doi: 10.1016/j.jobe.2023.107888.
  • Aydın S, Yazıcı H, Yiğiter H, et al. Sulfuric acid resistance of high-volume fly ash concrete. Build Environ. 2007;42(2):717–721. doi: 10.1016/j.buildenv.2005.10.024.
  • Khudhair MH, Elyoubi MS, Elharfi A. Study of the influence of water reducing and setting retarder admixtures of polycarboxylate “superplasticizers” on physical and mechanical properties of mortar and concrete. J Mater Environ Sci. 2018;9(1):56–65.
  • Tsimas S, Zervaki M, Ružinski N. Reuse of waste water from ready-mixed concrete plants. Manag Environ Qual Int J. 2011;22(1):7–17. doi: 10.1108/14777831111098444.
  • Asadollahfardi G, Asadi M, Jafari H, et al. Experimental and statistical studies of using wash water from ready-mix concrete trucks and a batching plant in the production of fresh concrete. Constr Build Mater. 2015;98:305–314. doi: 10.1016/j.conbuildmat.2015.08.053.
  • Audo M, Mahieux P, Turcry P. Utilization of sludge from ready-mixed concrete plants as a substitute for limestone fillers. Constr Build Mater. 2016;112:790–799. doi: 10.1016/j.conbuildmat.2016.02.044.
  • de Matos PR, Prudêncio LR, Pilar R, et al. Use of recycled water from mixer truck wash in concrete: effect on the hydration, fresh and hardened properties. Constr Build Mater. 2020;230:116981. doi: 10.1016/j.conbuildmat.2019.116981.
  • Vaičiukynienė D, Kantautas A, Tučkutė S, et al. The using of concrete wash water from ready mixed concrete plants in cement systems. Materials. 2021;14(10):2483. doi: 10.3390/MA14102483.
  • Chen X, Li Y, Bai HL, et al. Utilization of recycled concrete powder in cement composite: strength, microstructure and hydration characteristics. J Renew Mater. 2021;9(12):2189–2208. doi: 10.32604/jrm.2021.015394.
  • Yao XH, Xi JY, Guan JF, et al. A review of research on mechanical properties and durability of concrete mixed with wastewater from ready-mixed concrete plant. Materials. 2021;15(4):1386. doi: 10.3390/ma15041386.
  • Chen X, Wu J, Ning Y, et al. Experimental study on the effect of wastewater and waste slurry of mixing plant on mechanical properties and microstructure of concrete. J Build Eng. 2022;52:104307. doi: 10.1016/j.jobe.2022.104307.
  • Aruntaş HY, Nallı E, Kaplan G. Usage of ready-mixed concrete plant wastewater in concrete with superplasticizer: effect on physico-mechanical properties. Constr Build Mater. 2022;348:128641. doi: 10.1016/j.conbuildmat.2022.128641.
  • Li D, Li Z, Lv C, et al. A predictive model of the effective tensile and compressive strengths of concrete considering porosity and pore size. Constr Build Mater. 2018;170:520–526. doi: 10.1016/j.conbuildmat.2018.03.028.
  • Wang Y, Yuan Q, Deng D, et al. Modeling compressive strength of cement asphalt composite based on pore size distribution. Constr Build Mater. 2017;150:714–722. doi: 10.1016/j.conbuildmat.2017.06.049.
  • Brandt AM. Cement-Based composites: materials, mechanical properties and performance. 2nd ed. Boca Raton (FL): CRC Press; 2009. p. 26–48.
  • Hansen TC. Physical structure of hardened cement paste. A classical approach. Mater Struct. 1986;19(6):423–436. doi: 10.1007/BF02472146.
  • Ryshkevitch R. Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc. 1953;36(2):65–68. doi: 10.1111/j.1151-2916.1953.tb12837.x.
  • Kumar R, Bhattacharjee B. Porosity, pore size distribution and in situ strength of concrete. Cem Concr Res. 2003;33(1):155–164. doi: 10.1016/S0008-8846(02)00942-0.
  • Shen A, Lin S, Guo Y, et al. Relationship between flexural strength and pore structure of pavement concrete under fatigue loads and freeze–thaw interaction in seasonal frozen regions. Constr Build Mater. 2018;174:684–692. doi: 10.1016/j.conbuildmat.2018.04.165.
  • Hou D, Li D, Hua P, et al. Statistical modelling of compressive strength controlled by porosity and pore size distribution for cementitious materials. Cem Concr Compos. 2018;96(4):11–20. doi: 10.1016/j.cemconcomp.2018.10.012.
  • Guo Y, Wu S, Lyu Z, et al. Pore structure characteristics and performance of construction waste composite powder-modified concrete. Constr Build Mater. 2021;269:121262. doi: 10.1016/j.conbuildmat.2020.121262.
  • Nigam M, Verma M. Effect of nano-silica on the fresh and mechanical properties of conventional concrete. Forces Mech. 2023;10:100165. doi: 10.1016/j.finmec.2022.100165.
  • Shahpari M, Khaloo A, Rashidi A, et al. Synergetic effects of hybrid nano-blended cement on mechanical properties of conventional concrete: experimental and analytical evaluation. Structures. 2023;48:1519–1536. doi: 10.1016/j.istruc.2023.01.066.
  • Garcia-Troncoso N, Baykara H, Cornejo MH, et al. Comparative mechanical properties of conventional concrete mixture and concrete incorporating mining tailings sands. Case Stud Constr Mater. 2022;16:e01031. doi: 10.1016/j.cscm.2022.e01031.
  • Liu J, Hossain MU, Xuan D, et al. Mechanical and durability performance of sustainable concretes containing conventional and emerging supplementary cementitious materials. Dev Built Environ. 2023;15:100197. doi: 10.1016/j.dibe.2023.100197.
  • Al-Joulani NM. Effect of wastewater type on concrete properties. Int J Appl Eng Res. 2015;10(19):39865–39870.
  • Silva MR, Naik TR, Claisse P, et al. Sustainable use of resources – recycling of sewage treatment plant water in concrete. In: Proceedings of the Second International Conference on Sustainable Construction Materials and Technologies June 28 - June 30, 2010,Universita Politecnica delle Marche, Ancona, Italy. Main Proceedings ed. J Zachar, P Claisse, T R Naik, E Ganjian.
  • Zhu J, Kang J, Liu Z. Resource recycling and carbon sequestration by carbonizing concrete washing wastewater of ready-mix concrete plant. Constr Build Mater. 2023;392:131916. doi: 10.1016/j.conbuildmat.2023.131916.
  • Qu RZ. Study on the effect of waste slurry on the properties of ready-mixed concrete. Harbin, China: Harbin Institute of Technology; 2016.
  • Borger J, Carrasquillo RL, Fowler DW. Use of recycled wash water and returned plastic concrete in the production of fresh concrete. Adv Cem Based Mater. 1994;1(6):267–274. doi: 10.1016/1065-7355(94)90035-3.
  • Sealey B, Phillips P, Hill G. Waste management issues for the UK ready-mixed concrete industry. Cem Concr Res. 2001;32(3–4):321–331. doi: 10.1016/S0921-3449(01)00069-6.
  • Su N, Miao B, Liu F. Effect of wash water and underground water on properties of concrete. Cem Concr Res. 2002;32(5):777–782. doi: 10.1016/s0008-8846(01)00762-1.
  • Xuan D, Zhan B, Poon CS, et al. Innovative reuse of concrete slurry waste from ready-mixed concrete plants in construction products. J Hazard Mater. 2016;312:65–72. doi: 10.1016/j.jhazmat.2016.03.036.
  • Ministry of Water Resources of the People’s Republic of China. Test code for hydraulic concrete (SL/352-2020). Beijing, China: Ministry of Water Resources of the People’s Republic of China; 2020.
  • Wu K, Shi HS, Xu LL, et al. Microstructural characterization of ITZ in blended cement concretes and its relation to transport properties. Cem Concr Res. 2016;79:243–256. doi: 10.1016/j.cemconres.2015.09.018.
  • Zhang P, Li Q, Wang J, et al. Effect of PVA fiber on durability of cementitious composite containing nano‐SiO2. Nanotechnol Rev. 2019;8(1):116–127. doi: 10.1515/ntrev-2019-0011.
  • Kadir AA, Shahidan S, Yee LH, et al. The effect on slurry water as a fresh water replacement in concrete properties. IOP Conf Ser Mater Sci Eng. 2016;133:012041. doi: 10.1088/1757-899X/133/1/012041.
  • Liu Y, Wang Z, Li Z, et al. Analysis on the damage degree of fly ash concrete under freeze–thaw–dry–wet coupling cycle. Concrete. 2020;(5):32–35. doi: 10.3969/j.issn.1002-3550.2020.05.009.
  • Noruzman AH, Muhammad B, Ismail M, et al. Characteristics of treated effluents and their potential applications for producing concrete. J Environ Manage. 2012;110:27–32. doi: 10.1016/j.jenvman.2012.05.019.
  • Gomes SDC, Zhou JL, Li WG, et al. Recycling of raw water treatment sludge in cementitious composites: effects on heat evolution, compressive strength and microstructure. Resour Conserv Recycl. 2020;161:104970. doi: 10.1016/j.resconrec.2020.104970.
  • Wang Y, He F, Wang J, et al. Effects of calcium bicarbonate on the properties of ordinary Portland cement paste. Constr Build Mater. 2019;225:591–600. doi: 10.1016/j.conbuildmat.2019.07.262.
  • Li L, Xie J, Zhang B, et al. A state-of-the-art review on the setting behaviours of ground granulated blast furnace slag- and metakaolin-based alkali-activated materials. Constr Build Mater. 2023;368:130389. doi: 10.1016/j.conbuildmat.2023.130389.
  • Feng Y, Zhang QL, Chen QS, et al. Hydration and strength development in blended cement with ultrafine granulated copper slag. PLOS One. 2019;14(4):e0215677. doi: 10.1371/journal.pone.0215677.
  • Zhang P, Wan JY, Wang KJ, et al. Influence of nano-SiO2 on properties of fresh and hardened high performance concrete: a state-of-the-art review. Constr Build Mater. 2017;148:648–658. doi: 10.1016/j.conbuildmat.2017.05.059.
  • Wang J, Guo ZX, Yuan Q, et al. Effects of ages on the ITZ microstructure of crumb rubber concrete. Constr Build Mater. 2020;254:119329. doi: 10.1016/j.conbuildmat.2020.119329.
  • Aldossary M, Ahmad S, Bahraq AA. Effect of total dissolved solids-contaminated water on the properties of concrete. J Build Eng. 2020;32:101496. doi: 10.1016/j.jobe.2020.101496.
  • Liu J, Tang KF, Qiu Q, et al. Experimental investigation on pore structure characterization of concrete exposed to water and chlorides. Materials. 2014;7(9):6646–6659. doi: 10.3390/ma7096646.
  • Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Constr Build Mater. 2011;25(11):4294–4298. doi: 10.1016/j.conbuildmat.2011.05.005.
  • Wu ZW, Lian HZ. High performance concrete. Beijing, China: China Railway Publishing House; 1999.
  • Bala M, Mohammad I, Muhammad ARB, et al. Influence of non-hydrocarbon substances on the compressive strength of natural rubber latex-modified concrete. Constr Build Mater. 2011;27(1):241–246. doi: 10.1016/j.conbuildmat.2011.07.054.
  • Sandrolini F, Franzoni E. Waste wash water recycling in ready-mixed concrete plants. Cem Concr Res. 2001;31(3):485–489. doi: 10.1016/s0008-8846(00)00468-3.
  • Cui S, Liu P, Cui E, et al. Experimental study on mechanical property and pore structure of concrete for shotcrete use in a hot-dry environment of high geothermal tunnels. Constr Build Mater. 2018;173:124–135. doi: 10.1016/j.conbuildmat.2018.03.191.
  • Jin S, Zhang J, Han S. Fractal analysis of relation between strength and pore structure of hardened mortar. Constr Build Mater. 2017;135:1–7. doi: 10.1016/j.conbuildmat.2016.12.152.
  • Duan Y, Yang Z, Wang Q, et al. Relationship between concrete pore structure and strength and permeability under negative temperature. Mater Rep. 2022;36(15):72–77.
  • Pawlak Z. Rough sets. Int J Comput Inform Sci. 1982;11(5):341–356. doi: 10.1007/BF01001956.
  • Zhou T, Lu H, Ren H, et al. Summary of attribute reduction algorithms based on rough sets. J Electron. 2021;49(7):1439–1449. doi: 10.12263/DZXB.20200330.
  • Yao X. Mechanical characteristics and safety assessment of highway bridge pile foundation in alpine salt swamp area. Xi’an, China: Chang’an University, 2018.
  • Bao X, Liu C. A weight determination method based on rough set. J Manage. 2009;6(6):729–732. doi: 10.3969/j.issn.1672-884X.2009.06.004.
  • Pawlak Z, Grzymala-Busse J, Slowinski R. Rough sets. Commun ACM. 1995;8(1):89–95. doi: 10.1007/BF01001956.
  • Guo X, Song M. Research progress on pore structure and characterization methods of autoclaved aerated concrete. Mater Rep. 2018;32(S2):440–445. https://CNKI:CDMD:1.1018.791484.
  • Schiller KK. Strength of porous materials. Cem Concr Res. 1971;1(4):419–422. doi: 10.1016/0008-8846(71)90035-4.
  • Balshin MY. Relation of mechanical properties of powder metals and their porosity and the ultimate properties of porous-metal ceramic materials. Dokl Askd SSSR. 1949;67(5):831–834.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.