90
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mechanical and microstructural properties of structural and non-structural lightweight foamed concrete with coal bottom ash as cement and sand replacement material

, , , , &

References

  • Provis JL, Myers RJ, White CE, et al. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem Concr Res. 2012;42(6):855–864. doi: 10.1016/j.cemconres.2012.03.004.
  • Xi H, Yao Y, Sun Y, et al. Compressive and thermal properties of foamed concrete at high temperature. J Sustain Cement Based Mater. 2022;11(6):353–369. doi: 10.1080/21650373.2021.1961639.
  • Zhang Z, Provis JL, Reid A, et al. Mechanical, thermal insulation, thermal resistance and acoustic absorption properties of geopolymer foam concrete. Cem Concr Compos. 2015;62:97–105. doi: 10.1016/j.cemconcomp.2015.03.013.
  • Ramamurthy K, Nambiar EK, Ranjani GIS. A classification of studies on properties of foam concrete. Cem Concr Compos. 2009;31(6):388–396. doi: 10.1016/j.cemconcomp.2009.04.006.
  • Amran YM, Farzadnia N, Ali AA. Properties and applications of foamed concrete; a review. Constr Build Mater. 2015;101:990–1005. doi: 10.1016/j.conbuildmat.2015.10.112.
  • Kearsley E, Wainwright P. The effect of high fly ash content on the compressive strength of foamed concrete. Cem Concr Res. 2001;31(1):105–112. doi: 10.1016/S0008-8846(00)00430-0.
  • Kearsley E, Mostert H. Designing mix composition of foamed concrete with high fly ash contents. In Use of foamed concrete in construction: proceedings of the international conference held at the University of Dundee, Scotland, UK on 5 July 2005. Thomas Telford Publishing, London SW1P 3AA, United Kingdom; 2005.
  • Sathish P, et al. Behaviour of light weight foam concrete block by using GGBS and foaming agent. Stress (N/mm2). 2018;3(13.68):17–422.
  • Awang H, Aljoumaily ZS. Influence of granulated blast furnace slag on mechanical properties of foam concrete. Cogent Eng. 2017;4(1):1409853. doi: 10.1080/23311916.2017.1409853.
  • Gökçe HS, Hatungimana D, Ramyar K. Effect of fly ash and silica fume on hardened properties of foam concrete. Constr Build Mater. 2019;194:1–11. doi: 10.1016/j.conbuildmat.2018.11.036.
  • Neville A. Suggestions of research areas likely to improve concrete. Concr Int. 1996;18(5):44–49.
  • Hadi FA, Awang H, Almulali MZ. The effect of oil palm ash incorporation in foamed concrete. Jurnal Teknologi. 2015; p. 63-68, 75(5). doi: 10.11113/jt.v75.4996.
  • Zulkarnain F, Ramli M. Rational proportion for mixture of foamed concrete design. Jurnal Teknologi. 2011; 55(1): p. 1-12. doi: 10.11113/jt.v55.73.
  • Shah SN, Mo KH, Yap SP, et al. Lightweight foamed concrete as a promising avenue for incorporating waste materials: a review. Resour Conserv Recycl. 2021;164:105103. doi: 10.1016/j.resconrec.2020.105103.
  • Namsone E, et al. The environmental impacts of foamed concrete production and exploitation. In IOP Conference Series: Materials Science and Engineering. Iop Publishing; 2017. doi: 10.1088/1757-899X/251/1/012029.
  • Ahmat AM, et al. Assessment of sustainable eco-processed pozzolan (EPP) from palm oil industry as a fly ash replacement in geopolymer concrete. Constr Build Mater. 2023;387:131424.
  • Haddadian A, Alengaram UJ, Alnahhal AM, et al. Valorization of diverse sizes of coal bottom ash as fine aggregate in the performance of lightweight foamed concrete. J Civil Eng Manag. 2022;28(8):601–619. doi: 10.3846/jcem.2022.16995.
  • Ranjetha K, Alengaram UJ, Alnahhal AM, et al. Towards sustainable construction through the application of low carbon footprint products. Mater Today. 2022;52:873–881. doi: 10.1016/j.matpr.2021.10.275.
  • Abraham HB, Alengaram UJ, Alnahhal AM, et al. Performance evaluation of cellular lightweight concrete using palm oil industrial waste as cement and fine aggregate replacement materials. Mater Today. 2022;52:902–910. doi: 10.1016/j.matpr.2021.10.301.
  • Siddique R. Design and development of self-compacting concrete made with coal bottom ash. J Sustain Cement Based Mater. 2015;4(3-4):225–237. doi: 10.1080/21650373.2015.1004138.
  • Siddique R, Aggarwal P, Aggarwal Y. Mechanical and durability properties of self-compacting concrete containing fly ash and bottom ash. J Sustain Cement Based Mater. 2012;1(3):67–82. doi: 10.1080/21650373.2012.726820.
  • Zhang B, Poon CS. Internal curing effect of high volume furnace bottom ash (FBA) incorporation on lightweight aggregate concrete. J Sustain Cement Based Mater. 2017;6(6):366–383. doi: 10.1080/21650373.2017.1299053.
  • Pormmoon P, Charoenamnuaysuk P, Jaturapitakkul C, et al. Strength, shrinkage, heat evolution, and microstructure of high performance concrete containing high proportions of ground bottom ash blended with fly ash. J Sustain Cement Based Mater. 2023;12(10):1270–1285. doi: 10.1080/21650373.2023.2214138.
  • Alnahhal AM, Alengaram UJ, Ibrahim MSI, et al. Synthesis of ternary binders and sand-binder ratio on the mechanical and microstructural properties of geopolymer foamed concrete. Constr Build Mater. 2022;349:128682. doi: 10.1016/j.conbuildmat.2022.128682.
  • Alnahhal AM, Alengaram UJ, Yusoff S, et al. Engineering performance of sustainable geopolymer foamed and non-foamed concretes. Constr Build Mater. 2022;316:125601. doi: 10.1016/j.conbuildmat.2021.125601.
  • Alnahhal AM, Alengaram UJ, Yusoff S, et al. Synthesis of sustainable lightweight foamed concrete using palm oil fuel ash as a cement replacement material. J Buil Eng. 2021;35:102047. doi: 10.1016/j.jobe.2020.102047.
  • Hamada HM, Yahaya F, Muthusamy K, et al. Comparison study between POFA and POCP in terms of chemical composition and physical properties-Review paper. IOP Conf Ser Earth Environ Sci. 2019;365(1):012004. doi: 10.1088/1755-1315/365/1/012004.
  • Kurama H, Topçu İB, Karakurt C. Properties of the autoclaved aerated concrete produced from coal bottom ash. J Mater Process Technol. 2009;209(2):767–773. doi: 10.1016/j.jmatprotec.2008.02.044.
  • Thongtha A, Maneewan S, Punlek C, et al. Application using sugar sediment to enhance mechanical properties of autoclaved aerated concrete. AMM. 2013;459:664–668. doi: 10.4028/www.scientific.net/AMM.459.664.
  • American Society for Testing & Materials. Standard specification for Portland cement ASTM 150. 2014.
  • American Society for Testing & Materials. Standard specification for concrete aggregates. 2017.
  • American Society for Testing & Materials. Standard practice for making and curing concrete test specimens in the laboratory. 2015.
  • American Society for Testing & Materials. Standard test method for density, absorption, and voids in hardened concrete. 2013.
  • American Society for Testing & Materials. Standard test method for splitting tensile strength of cylindrical concrete specimens. 2011.
  • American Society for Testing & Materials. Standard test method for pulse velocity through concrete. 2009.
  • American Society for Testing & Materials. Standard test method for flexural strength of concrete (using simple beam with Center-Point loading). 2002.
  • American Society for Testing & Materials. Standard test method for static modulus of elasticity and poisson’s ratio of concrete in compression. 2002.
  • Wongkeo W, Thongsanitgarn P, Pimraksa K, et al. Compressive strength, flexural strength and thermal conductivity of autoclaved concrete block made using bottom ash as cement replacement materials. Mater Design. 2012;35:434–439. doi: 10.1016/j.matdes.2011.08.046.
  • Jones MR, McCarthy A. Preliminary views on the potential of foamed concrete as a structural material. Mag Concr Res. 2005;57(1):21–31. doi: 10.1680/macr.2005.57.1.21.
  • Aminudin E, Md Din MF, Hussin MW, et al. Properties of agro-industrial aerated concrete as potential thermal insulation for building. MATEC Web Confer. 2016;47:04020. doi: 10.1051/matecconf/20164704020.
  • Onprom P, Chaimoon K, Cheerarot R. Influence of bottom ash replacements as fine aggregate on the property of cellular concrete with various foam contents. J Adv Mater Sci Eng. 2015;2015:1–11. doi: 10.1155/2015/381704.
  • Wongkeo W, Chaipanich A. Compressive strength, microstructure and thermal analysis of autoclaved and air cured structural lightweight concrete made with coal bottom ash and silica fume. Mater Sci Eng. 2010;527(16–17):3676–3684. doi: 10.1016/j.msea.2010.01.089.
  • Wongkeo W, Thongsanitgarn P, Chaipanich A. Compressive strength of binary and ternary blended cement mortars containing fly ash and silica fume under autoclaved curing. Adv Mater Res. 2012; 343: p. 316–321.
  • Apiwaranuwat A, Kitratporn P, Chuangcham K, et al. Use of sugarcane bagasse ash as raw material in production of autoclaved lightweight concrete. AMR. 2013;652–654:1242–1246. doi: 10.4028/www.scientific.net/AMR.652-654.1242.
  • Falliano D, De Domenico D, Ricciardi G, et al. Experimental investigation on the compressive strength of foamed concrete: effect of curing conditions, cement type, foaming agent and dry density. Constr Build Mater. 2018;165:735–749. doi: 10.1016/j.conbuildmat.2017.12.241.
  • Nguyen TT, Bui HH, Ngo TD, et al. Experimental and numerical investigation of influence of air-voids on the compressive behaviour of foamed concrete. Mater Design. 2017;130:103–119. doi: 10.1016/j.matdes.2017.05.054.
  • Jiang J, Lu Z, Niu Y, et al. Study on the preparation and properties of high-porosity foamed concretes based on ordinary Portland cement. Mater Design. 2016;92:949–959. doi: 10.1016/j.matdes.2015.12.068.
  • Tsiskreli G, Dzhavakhidze A. The effect of aggregate size on strength and deformation of concrete. Hydrotech Const. 1970;4(5):448–453. doi: 10.1007/BF02376145.
  • Chen W, Xie Y, Li B, et al. Role of aggregate and fibre in strength and drying shrinkage of alkali-activated slag mortar. Constr Build Mater. 2021;299:124002. doi: 10.1016/j.conbuildmat.2021.124002.
  • Ngohpok C, Sata V, Satiennam T, et al. Mechanical properties, thermal conductivity, and sound absorption of pervious concrete containing recycled concrete and bottom ash aggregates. KSCE J Civ Eng. 2018;22(4):1369–1376. doi: 10.1007/s12205-017-0144-6.
  • Gooi S, Mousa AA, Kong D. A critical review and gap analysis on the use of coal bottom ash as a substitute constituent in concrete. J Cleaner Prod. 2020;268:121752. doi: 10.1016/j.jclepro.2020.121752.
  • Singh M, Siddique R. Strength properties and micro-structural properties of concrete containing coal bottom ash as partial replacement of fine aggregate. Constr Build Mater. 2014;50:246–256. doi: 10.1016/j.conbuildmat.2013.09.026.
  • Aggarwal Y, Siddique R. Microstructure and properties of concrete using bottom ash and waste foundry sand as partial replacement of fine aggregates. Constr Build Mater. 2014;54:210–223. doi: 10.1016/j.conbuildmat.2013.12.051.
  • Ghafoori N, Bucholc J. Investigation of lignite-based bottom ash for structural concrete. J Mater Civ Eng. 1996;8(3):128–137. doi: 10.1061/(ASCE)0899-1561(1996)8:3(128).
  • Kockal NU, Ozturan T. Strength and elastic properties of structural lightweight concretes. Mater Design. 2011;32(4):2396–2403. doi: 10.1016/j.matdes.2010.12.053.
  • Singh M, Siddique R, Ait-Mokhtar K, et al. Durability properties of concrete made with high volumes of low-calcium coal bottom ash as a replacement of two types of sand. J Mater Civ Eng. 2016;28(4):04015175. doi: 10.1061/(ASCE)MT.1943-5533.0001464.
  • Chen X, Wu S, Zhou J. Influence of porosity on compressive and tensile strength of cement mortar. Constr Build Mater. 2013;40:869–874. doi: 10.1016/j.conbuildmat.2012.11.072.
  • Lian C, Zhuge Y, Beecham S. The relationship between porosity and strength for porous concrete. Constr Build Mater. 2011;25(11):4294–4298. doi: 10.1016/j.conbuildmat.2011.05.005.
  • Khatri R, Sirivivatnanon V, Gross W. Effect of different supplementary cementitious materials on mechanical properties of high performance concrete. Cem Concr Res. 1995;25(1):209–220. doi: 10.1016/0008-8846(94)00128-L.
  • Zhang X, Yang Q, Shi Y, et al. Effects of different control methods on the mechanical and thermal properties of ultra-light foamed concrete. Constr Build Mater. 2020;262:120082. doi: 10.1016/j.conbuildmat.2020.120082.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.