117
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Development and characterization of volume-stabilized grouts used for borehole heat exchangers

ORCID Icon, ORCID Icon, & ORCID Icon

References

  • Wan KKW, Li DHW, Liu D, et al. Future trends of building heating and cooling loads and energy consumption in different climates. Build Environ. 2011;46(1):223–234. doi: 10.1016/j.buildenv.2010.07.016.
  • Natural Resources Canada. National energy use database, energy use data handbook. Ottawa, Canada: Natural Resources Canada; 2019.
  • Zhai Y, Zhang T, Tan X, et al. Environmental impact assessment of ground source heat pump system for heating and cooling: a case study in China. Int J Life Cycle Assess. 2022;27(3):395–408. doi: 10.1007/s11367-022-02034-z.
  • Rees S. Advances in ground-source heat pump systems. Cambridge, UK: Woodhead Publishing; 2016.
  • Ahmadi MH, Ahmadi MA, Sadaghiani MS, et al. Ground source heat pump carbon emissions and ground-source heat pump systems for heating and cooling of buildings: a review. Env Prog Sustain Energy. 2018;37(4):1241–1265. doi: 10.1002/ep.12802.
  • Guo Y, Hu X, Banks J, et al. Considering buried depth in the moving finite line source model for vertical borehole heat exchangers—a new solution. Energy Build. 2020;214:109859. doi: 10.1016/j.enbuild.2020.109859.
  • Mustafa Omer A. Ground-source heat pumps systems and applications. Renew Sustain Energy Rev. 2008;12(2):344–371. doi: 10.1016/j.rser.2006.10.003.
  • Sarbu I, Sebarchievici C. General review of ground-source heat pump systems for heating and cooling of buildings. Energy Build. 2014;70:441–454. doi: 10.1016/j.enbuild.2013.11.068.
  • Lucia U, Simonetti M, Chiesa G, et al. Ground-source pump system for heating and cooling: review and thermodynamic approach. Renew Sustain Energy Rev. 2017;70:867–874. doi: 10.1016/j.rser.2016.11.268.
  • Florides G, Kalogirou S. Ground heat exchangers—a review of systems, models and applications. Renew Energy. 2007;32(15):2461–2478. doi: 10.1016/j.renene.2006.12.014.
  • Lee C, Lee K, Choi H, et al. Characteristics of thermally-enhanced bentonite grouts for geothermal heat exchanger in South Korea. Sci China Ser E-Technol Sci. 2010;53(1):123–128. doi: 10.1007/s11431-009-0413-9.
  • Fleuchaus P, Blum P. Damage event analysis of vertical ground source heat pump systems in Germany. Geotherm Energy. 2017;5(1):1–15. doi: 10.1186/s40517-017-0067-y.
  • Kim D, Kim G, Kim D, et al. Experimental and numerical investigation of thermal properties of cement-based grouts used for vertical ground heat exchanger. Renew Energy. 2017;112:260–267. doi: 10.1016/j.renene.2017.05.045.
  • Delaleux F, Py X, Olives R, et al. Enhancement of geothermal borehole heat exchangers performances by improvement of bentonite grouts conductivity. Appl Therm Eng. 2012;33-34:92–99. doi: 10.1016/j.applthermaleng.2011.09.017.
  • Borinaga-Treviño R, Pascual-Muñoz P, Castro-Fresno D, et al. Study of different grouting materials used in vertical geothermal closed-loop heat exchangers. Appl Therm Eng. 2013;50(1):159–167. doi: 10.1016/j.applthermaleng.2012.05.029.
  • Pascual-Muñoz P, Indacoechea-Vega I, Zamora-Barraza D, et al. Experimental analysis of enhanced cement-sand-based geothermal grouting materials. Constr Build Mater. 2018;185:481–488. doi: 10.1016/j.conbuildmat.2018.07.076.
  • Blázquez CS, Martín AF, Nieto IM, et al. Analysis and study of different grouting materials in vertical geothermal closed-loop systems. Renew Energy. 2017;114:1189–1200. doi: 10.1016/j.renene.2017.08.011.
  • Mascarin L, Garbin E, Di Sipio E, et al. Selection of backfill grout for shallow geothermal systems: materials investigation and thermo-physical analysis. Constr Build Mater. 2022;318:125832. doi: 10.1016/j.conbuildmat.2021.125832.
  • Mahmoud M, Ramadan M, Pullen K, et al. A review of grout materials in geothermal energy applications. Int J Thermofluids. 2021;10:100070. doi: 10.1016/j.ijft.2021.100070.
  • Wang S, Jian L, Shu Z, et al. A high thermal conductivity cement for geothermal exploitation application. Nat Resour Res. 2020;29(6):3675–3687. doi: 10.1007/s11053-020-09694-4.
  • Frąc M, Szudek W, Szołdra P, et al. Grouts with highly thermally conductive binder for low-temperature geothermal applications. Constr Build Mater. 2021;295:123680. doi: 10.1016/j.conbuildmat.2021.123680.
  • Kim D, Oh S. Relationship between the thermal properties and degree of saturation of cementitious grouts used in vertical borehole heat exchangers. Energy Build. 2019;201:1–9. doi: 10.1016/j.enbuild.2019.07.017.
  • Song X, Zheng R, Li R, et al. Study on thermal conductivity of cement with thermal conductive materials in geothermal well. Geothermics. 2019;81:1–11. doi: 10.1016/j.geothermics.2019.04.001.
  • Allan M. Thermal conductivity and other properties of cementitious grouts, Brookhaven National Lab., Dept. of Applied Science, Upton, NY (United States), 1998.
  • Borinaga-Treviño R, Pascual-Muñoz P, Castro-Fresno D, et al. Borehole thermal response and thermal resistance of four different grouting materials measured with a TRT. Appl Therm Eng. 2013;53(1):13–20. doi: 10.1016/j.applthermaleng.2012.12.036.
  • Philippacopoulos AJ, Berndt ML. Influence of debonding in ground heat exchangers used with geothermal heat pumps. Geothermics. 2001;30(5):527–545. doi: 10.1016/S0375-6505(01)00011-6.
  • Liu J, Ou Z, Mo J, et al. The effect of SCMs and SAP on the autogenous shrinkage and hydration process of RPC. Constr Build Mater. 2017;155:239–249. doi: 10.1016/j.conbuildmat.2017.08.061.
  • Norhasri MSM, Hamidah MS, Fadzil AM. Inclusion of nano metaclayed as additive in ultra high performance concrete (UHPC). Constr Build Mater. 2019;201:590–598. doi: 10.1016/j.conbuildmat.2019.01.006.
  • Meng W, Khayat KH. Effect of graphite nanoplatelets and carbon nanofibers on rheology, hydration, shrinkage, mechanical properties, and microstructure of UHPC. Cem Concr Res. 2018;105:64–71. doi: 10.1016/j.cemconres.2018.01.001.
  • Wu Z, Shi C, Khayat KH. Investigation of mechanical properties and shrinkage of ultra-high performance concrete: influence of steel fiber content and shape. Composites Part B: Engineering. 2019;174:107021. doi: 10.1016/j.compositesb.2019.107021.
  • Wagner V, Blum P, Kübert M, et al. Analytical approach to groundwater-influenced thermal response tests of grouted borehole heat exchangers. Geothermics. 2013;46:22–31. doi: 10.1016/j.geothermics.2012.10.005.
  • Zhan P-M, He Z-h Application of shrinkage reducing admixture in concrete: a review. Constr Build Mater. 2019;201:676–690. doi: 10.1016/j.conbuildmat.2018.12.209.
  • Guo W, Sun N, Yang T, et al. Synthesis and properties of amphoteric superplasticizer. ACI Mater J. 2011;108(6):614–618.
  • Chaunsali P, Mondal P, Bullard J. Influence of calcium sulfoaluminate (CSA) cement content on expansion and hydration behavior of various ordinary Portland cement‐CSA blends. J Am Ceram Soc. 2015;98(8):2617–2624. doi: 10.1111/jace.13645.
  • Yang Z, Ye H, Yuan Q, et al. Factors influencing the hydration, dimensional stability, and strength development of the OPC-CSA-Anhydrite ternary system. Materials (Basel). 2021;14(22):7001. doi: 10.3390/ma14227001.
  • Kang S-H, Hong S-G, Moon J. Shrinkage characteristics of heat-treated ultra-high performance concrete and its mitigation using superabsorbent polymer based internal curing method. Cem Concr Compos. 2018;89:130–138. doi: 10.1016/j.cemconcomp.2018.03.003.
  • Chaunsali P, Mondal P. Hydration and early-age expansion of calcium sulfoaluminate cement-based binders: experiments and thermodynamic modeling. J Sustain Cem Based Mater. 2015;5(4):259–267. doi: 10.1080/21650373.2015.1060184.
  • Huang G, Pudasainee D, Gupta R, et al. Extending blending proportions of ordinary Portland cement and calcium sulfoaluminate cement blends: its effects on setting, workability, and strength development. Front Struct Civ Eng. 2021;15(5):1249–1260. doi: 10.1007/s11709-021-0770-4.
  • Jian Z, Guangping H, Lin L, et al. Appraising the potential of calcium sulfoaluminate cement-based grouts in simulated permafrost environments. Front Struct Civ Eng. 2023;17(5):722–731. doi: 10.1007/s11709-023-0950-5.
  • Trauchessec R, Mechling J-M, Lecomte A, et al. Impact of anhydrite proportion in a calcium sulfoaluminate cement and Portland cement blend. Adv Cem Res. 2014;26(6):325–333. doi: 10.1680/adcr.13.00051.
  • Yu H, Wu L, Liu WV, et al. Developing expansive shotcrete mixtures from calcium sulfoaluminate, Portland cement, and calcium sulfate. In Proceedings of the CIM, Montreal, Canada, 2017.
  • Yu H, Wu L, Liu WV, et al. Effects of fibers on expansive shotcrete mixtures consisting of calcium sulfoaluminate cement, ordinary Portland cement, and calcium sulfate. J Rock Mech Geotech Eng. 2018;10(2):212–221. doi: 10.1016/j.jrmge.2017.12.001.
  • ASTM-C1437. Standard Test Method for Flow of Hydraulic Cement Mortar, ASTM International, West Conshohocken, PA, USA, 2020.
  • Duran-Herrera A, De-León-Esquivel J, Bentz DP, et al. Self-compacting concretes using fly ash and fine limestone powder: shrinkage and surface electrical resistivity of equivalent mortars. Constr Build Mater. 2019;199:50–62. doi: 10.1016/j.conbuildmat.2018.11.191.
  • Belhadi R, Govin A, Grosseau P. Influence of polycarboxylate superplasticizer, citric acid and their combination on the hydration and workability of calcium sulfoaluminate cement. Cem Concr Res. 2021;147:106513. doi: 10.1016/j.cemconres.2021.106513.
  • ASTM-C642. Standard Test Method for Density, Absorption, and Voids in Hardened Concrete, ASTM International, West Conshohocken, PA, USA, 2021.
  • Davraz M, Kilinçarslan Ş, Koru M, et al. Investigation of relationships between ultrasonic pulse velocity and thermal conductivity coefficient in foam concretes. Acta Phys Pol A. 2016;130(1):469–470. doi: 10.12693/APhysPolA.130.469.
  • Mendes JC, Barreto RR, Costa LCB, et al. Correlation between ultrasonic pulse velocity and thermal conductivity of cement-based composites. J Nondestr Eval. 2020;39(2):1–10.
  • Huang G, Pudasainee D, Gupta R, et al. Thermal properties of calcium sulfoaluminate cement-based mortars incorporated with expanded perlite cured at cold temperatures. Constr Build Mater. 2021;274:122082. doi: 10.1016/j.conbuildmat.2020.122082.
  • ASTM-C597. Standard Test Method for Pulse Velocity Through Concrete, ASTM International, West Conshohocken, PA, USA, 2016.
  • Gustafsson SE. Transient plane source techniques for thermal conductivity and thermal diffusivity measurements of solid materials. Rev Sci Instrum. 1991;62(3):797–804. doi: 10.1063/1.1142087.
  • Bederina M, Marmoret L, Mezreb K, et al. Effect of the addition of wood shavings on thermal conductivity of sand concretes: experimental study and modelling. Constr Build Mater. 2007;21(3):662–668. doi: 10.1016/j.conbuildmat.2005.12.008.
  • ASTM-C39. Standard Test Method for Compressive Strength of Cylindrical Concrete Specimens, ASTM International, West Conshohocken, PA, USA, 2021.
  • Zheng G, Huang J, Diao Y, et al. Experimental study on preparation and optimization of high-performance cement grouts mixed with chemical additives for capsule grouting technology. J Mater Res Technol. 2022;17:1469–1484. doi: 10.1016/j.jmrt.2022.01.078.
  • Jia L, Fang Y, Jia Z, et al. Optimization of the fresh and hardened properties of cement grouting material for semiflexible pavement using polypropylene fiber. J Sustain Cem Based Mater. 2023;1–10. doi: 10.1080/21650373.2023.2289155.
  • Xiaowei Z, Chunxia L, Junyi S. Influence of tartaric acid on early hydration and mortar performance of Portland cement-calcium aluminate cement-anhydrite binder. Constr Build Mater. 2016;112:877–884. doi: 10.1016/j.conbuildmat.2016.02.214.
  • Telesca A, Marroccoli M, Coppola L, et al. Tartaric acid effects on hydration development and physico-mechanical properties of blended calcium sulphoaluminate cements. Cem Concr Compos. 2021;124:104275. doi: 10.1016/j.cemconcomp.2021.104275.
  • Min D, Mingshu T. Formation and expansion of ettringite crystals. Cem Concr Res. 1994;24(1):119–126. doi: 10.1016/0008-8846(94)90092-2.
  • Sargam Y, Melugiri Shankaramurthy B, Wang K. Characterization of RCAs and their concrete using simple test methods. J Sustain Cem Based Mater. 2019;9(2):61–77. doi: 10.1080/21650373.2019.1692093.
  • Zhao J, Huang G, Guo Y, et al. Developing thermal insulation cement-based mortars using recycled carbon black derived from scrapped off-the-road tires. Constr Build Mater. 2023;393:132043. doi: 10.1016/j.conbuildmat.2023.132043.
  • Huang G, Gupta R, Liu WV. Effects of sodium gluconate on hydration reaction, setting, workability, and strength development of calcium sulfoaluminate belite cement mixtures. Journal of Sustainable Cement-Based Materials. 2021;11(5):273–285. doi: 10.1080/21650373.2021.1936269.
  • Li W. The properties and hydration of Portland cement containing calcium sulfoaluminate cement. Ceram Silik. 2018;62:364–373. doi: 10.13168/cs.2018.0032.
  • Trauchessec R, Mechling JM, Lecomte A, et al. Hydration of ordinary Portland cement and calcium sulfoaluminate cement blends. Cem Concr Compos. 2015;56:106–114. doi: 10.1016/j.cemconcomp.2014.11.005.
  • Tazawa E-I, Miyazawa S, Kasai T. Chemical shrinkage and autogenous shrinkage of hydrating cement paste. Cem Concr Res. 1995;25(2):288–292. doi: 10.1016/0008-8846(95)00011-9.
  • Ping X, Beaudoin JJ. Mechanism of sulphate expansion I. Thermodynamic principle of crystallization pressure. Cem Concr Res. 1992;22(4):631–640. doi: 10.1016/0008-8846(92)90015-N.
  • Zhang W, Zakaria M, Hama Y. Influence of aggregate materials characteristics on the drying shrinkage properties of mortar and concrete. Constr Build Mater. 2013;49:500–510. doi: 10.1016/j.conbuildmat.2013.08.069.
  • Choi W, Ooka R. Effect of natural convection on thermal response test conducted in saturated porous formation: comparison of gravel-backfilled and cement-grouted borehole heat exchangers. Renew Energy. 2016;96:891–903. doi: 10.1016/j.renene.2016.05.040.
  • Allan ML, Kavanaugh SP. Thermal conductivity of cementitious grouts and impact on heat exchanger length design for ground source heat pumps. HVAC&R Res. 1999;5(2):85–96. doi: 10.1080/10789669.1999.10391226.
  • Montgomery R. Viscosity and thermal conductivity of air and diffusivity of water vapor in air. J Meteor. 1947;4(6):193–196. doi: 10.1175/1520-0469(1947)004<0193:VATCOA>2.0.CO;2.
  • Huang G, Guo Y, Bescher E, et al. Numerical modeling of temperature profiles in hardening belitic calcium sulfoaluminate cement-based mortars for permafrost region applications. J Sustain Cem Based Mater. 2022;12(3):331–344. doi: 10.1080/21650373.2022.2056541.
  • Giosuè C, Mobili A, Yu QL, et al. Properties of multifunctional lightweight mortars containing zeolite and natural fibers. J Sustain Cem Based Mater. 2019;8(4):214–227. doi: 10.1080/21650373.2019.1615012.
  • Demirboğa R, Gül R. The effects of expanded perlite aggregate, silica fume and fly ash on the thermal conductivity of lightweight concrete. Cem Concr Res. 2003;33(5):723–727. doi: 10.1016/S0008-8846(02)01032-3.
  • Hajmohammadian Baghban M, Hovde PJ, Jacobsen S. Analytical and experimental study on thermal conductivity of hardened cement pastes. Mater Struct. 2012;46(9):1537–1546. doi: 10.1617/s11527-012-9995-y.
  • Pelletier L, Winnefeld F, Lothenbach B. The ternary system Portland cement–calcium sulphoaluminate clinker–anhydrite: hydration mechanism and mortar properties. Cem Concr Compos. 2010;32(7):497–507. doi: 10.1016/j.cemconcomp.2010.03.010.
  • Gu P, Beaudoin JJ, Quinn EG, et al. Early strength development and hydration of ordinary Portland cement/calcium aluminate cement pastes. Adv Cem Based Mater. 1997;6(2):53–58. doi: 10.1016/S1065-7355(97)00008-4.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.